Часть отобранного воздуха известного объема откачивают из канистры при низком расходе через заполненную стеклянными шариками ловушку, охлаждаемую жидким аргоном приблизительно до 87 К. В криогенной ловушке собираются и одновременно концентрируются НМЛОС, тогда как азот, кислород, метан и другие соединения проходят через нее, не задерживаясь. Проводят динамическую градуировку системы таким образом, чтобы объем пробы, проходящей через ловушку, не требовалось количественно определять, но чтобы он был точно воспроизведен при градуировке и анализе.
После того как проба воздуха известного объема прошла через ловушку, направляют поток газа-носителя гелия через ловушку в ПИД против потока пробы воздуха. После вымывания остаточного воздуха и метана из ловушки и стабилизации базовой линии ПИД удаляют хладагент, и температура ловушки повышается до уровня от 353 до 363 К.
При повышении температуры предварительно собранные в ловушке органические соединения вновь испаряются и поступают в ПИД, выходной сигнал которого представляет собой пик или несколько пиков. Пик или пики интегрируют, а полученные результаты переводят в единицы содержания с помощью предварительно полученной градуировочной характеристики, связывающей площади проинтегрированных пиков с известными содержаниями пропана.
Криогенная ловушка одновременно концентрирует НМЛОС и отделяет и удаляет метан из компонентов пробы воздуха. Таким образом, данная методика позволяет непосредственно определить содержание НМЛОС с использованием ПИД и благодаря концентрированию имеет более низкий предел количественного определения по сравнению с традиционной непрерывной регистрацией содержания НМЛОС газоанализаторами.
Пробу вводят в ПИД, где пары органических соединений сгорают в обогащенном водородом пламени с образованием ионизированных фрагментов молекул. Затем эти ионизированные фрагменты собираются и детектируются. Поскольку в качестве газа-носителя используют гелий, выходной сигнал детектора практически один и тот же для всех углеводородных соединений. Таким образом, сводится к минимуму такой недостаток метода в его первоначальном исполнении, как изменение выходного сигнала ПИД в зависимости от класса углеводородов (ароматические, олефиновые, парафиновые). Предел определения ПИД для большинства органических соединений, содержащих карбонильные, спиртовые и галоидные функциональные группы, намного выше.
Использование методики, установленной настоящим стандартом, может привести к получению менее точных результатов измерений содержания некоторых галогенсодержащих или кислородсодержащих углеводородов, выделяемых близлежащими промышленными источниками загрязнения воздуха.