Статус документа
Статус документа

ГОСТ Р 52892-2007 Вибрация и удар. Вибрация зданий. Измерение вибрации и оценка ее воздействия на конструкцию

     5 Принципы оценивания воздействия вибрации на конструкцию

5.1 Механизмы воздействия вибрации
     


    5.1.1 Прямое воздействие на конструкцию

Вибрация оказывает на конструкцию здания механические воздействия, вызывая тем самым изменение ее состояния. Напряжение в каждой точке конструкции напрямую связано с деформациями, возникающими в этой точке, поэтому может быть выражено через параметры вибрации. При этом пиковые значения напряжения связаны с пиковыми значениями скорости. Теоретически по результатам измерений вибрации можно определить механическое напряжение и сравнить его с допустимыми значениями для данного элемента конструкции в зависимости от вида и продолжительности воздействия динамической нагрузки, свойств строительного материала и типа конструкции.

На состояние конструкции помимо пиковых напряжений влияют также накопленные усталостные изменения материала, которые невозможно определить по результатам измерений вибрации. Обычно усталостными эффектами пренебрегают, если динамическое напряжение менее 10% допустимого статического напряжения. Однако в некоторых случаях для оценки влияния динамических нагрузок (вибрации) может потребоваться измерение механических напряжений.

5.1.2 Влияние на состояние грунта в основании здания

Помимо изменений состояния самой конструкции вибрация вызывает изменения свойств грунта, на котором установлено здание. Одним из таких изменений является локальное уплотнение грунта, которое может привести к повреждению конструкции из-за неравномерной осадки под фундаментом здания. Если вибрация носит долговременный характер, то уплотнение грунта может произойти даже на большом расстоянии от источника вибрации, когда уровень вибрации мал и не способен оказать существенного прямого воздействия на конструкцию здания.

Еще более опасным явлением является разжижение грунта и потеря им несущей способности под воздействием вибрации. Особенно это относится к слабосвязанным водонасыщенным почвам.

Указанные явления являются косвенными эффектами воздействия вибрации на конструкцию здания, которые, как правило, нельзя определить по результатам измерений колебаний конструкции. Поэтому для проведения комплексной оценки воздействия вибрации рекомендуется привлекать специалистов-геотехников, особенно в тех случаях, если здания расположены на слабых грунтах.

5.2 Характеристики вибрации
     


    5.2.1 Длительность возбуждения

Важной характеристикой источника вибрации является длительность создаваемого возбуждения. Кратковременные импульсы или последовательность таких импульсов, если они повторяются нерегулярно или с низкой частотой повторения, при которой отклик успевает затухнуть до прихода следующего импульса, не способны эффективно раскачать конструкцию здания на ее резонансных частотах.

Примечание - Обычно частота собственных колебаний небольших сооружений высотой до 12 м находится в диапазоне от 4 до 15 Гц, а частота собственных колебаний элементов конструкции, таких как стены и перекрытия, - в диапазоне от 10 до 30 Гц и выше.


Но если здание в течение длительного времени подвергается воздействию непрерывной вибрации, то в отдельных точках конструкции максимальные значения колебания могут в 2,5-10 раз превышать значения колебаний грунта в месте его контакта с фундаментом здания. В соответствии с этим вибрацию классифицируют по длительности воздействия. Вибрацию считают кратковременной, если время действия источника недостаточно для накопления существенных усталостных повреждений конструкции, а также для того, чтобы раскачать конструкцию в резонансном режиме. Все остальные источники создают долговременную вибрацию.

5.2.2 Диапазон частот и уровень вибрации

Диапазон частот вибрации в разных точках здания зависит от источника возбуждения, свойств грунта, через который воздействие передается на конструкцию, и передаточных характеристик конструкции. При некоторых сочетаниях указанных факторов (например, при взрывах твердой породы, проводимых на небольшом расстоянии от здания, или при работе высокоскоростных машин) верхняя граница диапазона частот может достигать 1000 Гц. Однако в большинстве случаев при оценке риска повреждения конструкции здания вследствие воздействия на него вибрации техногенной природы достаточно проводить анализ в диапазоне частот от 1 до 150 Гц.

Уровни вибрации могут колебаться от единиц до нескольких сотен миллиметров в секунду в зависимости от частоты возбуждения.

Характеристики вибрации, измеряемой на конструкции здания, для разных источников возбуждения техногенной природы приведены в таблице 1*.

________________

* Данные таблицы 1 взяты из ИСО 4866:1990 "Mechanical vibration and shock - Vibration of buildings - Guidelines for the measurement of vibrations and evaluation of their effects on buildings" ("Вибрация и удар. Вибрация зданий. Руководство по измерению вибрации и оценке ее воздействия на здание").


Таблица 1 - Типичный диапазон параметров вибрации зданий для некоторых источников возбуждения

Источник возбуждения

Диапазон частот, Гц

Диапазон перемещений, мкм

Диапазон скоростей, мм/с

Диапазон ускорений, м/с

Длительность

Движение дорожного (рельсового) транспорта

1-80

1-200

0,2-50

0,02-1

Д/К

Взрывы

1-300

100-2500

0,2-500

0,02-50

К

Забивка свай

1-100

10-50

0,2-50

0,02-2

К

Работа машин вне здания

1-300

10-1000

0,2-50

0,02-1

Д/К

Примечание - В таблице применены следующие обозначения:

Д - долговременный процесс;

К - кратковременный процесс.



5.3 Факторы, влияющие на риск повреждения конструкции
     


    5.3.1 Общие положения

Отклик конструкции здания на передаваемую через грунт вибрацию зависит от типа фундамента, типа и состояния грунта в основании здания, особенностей и состояния конструкции здания и расстояния, на котором находится источник вибрации.

5.3.2 Тип фундамента и состояние грунта

Тип фундамента и состояние грунта определяют динамику системы на границе двух сред (грунт - фундамент здания). Так деформации фундамента, вызываемые сейсмическими волнами, прямо пропорциональны пиковому значению скорости в точке фундамента, но обратно пропорциональны скорости распространения этих волн в толще грунта. Поскольку скорость распространения сейсмических волн возрастает при увеличении жесткости грунта, то одним и тем же деформациям (потенциальным источникам появления трещин) будут соответствовать тем большие пиковые значения скорости, чем выше жесткость грунта. Таким образом, если конструкция фундамента обеспечивает высокую корреляцию между вибрацией фундамента и грунта, то для зданий, возведенных, например, на скальной породе, допустима вибрация фундамента с большими значениями скорости.