4.1 Общие положения
Обычно гибкие роторы требуют проведения многоплоскостной балансировки на высокой скорости вращения. Однако иногда допустима балансировка гибкого ротора на низкой скорости вращения. Для балансировки на высокой скорости используют два основных метода:
- балансировку по модам вибрации;
- метод коэффициентов влияния.
Обычно на практике используют сочетание этих двух методов с применением вычислительной техники и специальных программ расчета.
4.2 Распределение дисбаланса
Конструкция и методы изготовления ротора оказывают существенное влияние на значение и распределение дисбаланса вдоль его оси. Роторы могут быть цельными или сборными. Например, роторы реактивных двигателей собирают из многочисленных элементов в виде оболочек, дисков и лопаток, а роторы генераторов обычно делают из одной заготовки, но впоследствии к ним крепят дополнительные элементы. На распределение дисбаланса существенное влияние могут оказывать диски, муфты и т.д., насаживаемые на вал в горячем состоянии.
Поскольку распределение дисбаланса ротора вдоль его оси является, как правило, случайным, роторы одной и той же модели могут иметь различные распределения дисбаланса. Для гибких роторов распределение дисбаланса вдоль оси является существенно более важной характеристикой, чем для жестких, поскольку от этого распределения зависит степень возбуждения той или иной моды изгибных колебаний. Влияние дисбаланса, сосредоточенного в конкретной точке вдоль оси ротора, определяется формой изгибных колебаний ротора.
Коррекция дисбаланса в плоскостях, координаты которых вдоль оси ротора отличаются от координаты точки реального сосредоточения дисбаланса, способна вызвать вибрацию на скоростях вращения, отличных от той, на которой эту коррекцию проводили. Эта вибрация может превышать установленные пределы, особенно на скорости, близкой к критической скорости вращения ротора. Такое превышение можно наблюдать даже на скорости, на которой проводилась балансировка, если формы возбуждаемых мод на месте эксплуатации и в процессе балансировки существенно различаются.
Некоторые роторы, нагреваясь в процессе работы, испытывают тепловые деформации, что приводит к изменению распределения дисбаланса. Если дисбаланс ротора существенно изменяется от пуска к пуску, приведение его значения к допустимому может оказаться невыполнимым.
4.3 Собственные моды вибрации
Если демпфирование ротора пренебрежимо мало, то моды ротора совпадают с собственными модами изгибных колебаний. В случае, когда опорные подшипники ротора обладают постоянной жесткостью во всех радиальных направлениях, моды представляют собой плоские кривые, вращающиеся вокруг оси ротора. На рисунке 1 показаны типичные формы трех первых собственных мод обычного ротора, опирающегося своими концами на податливые подшипниковые опоры.
Плоскости , и расположены в узлах мод, а плоскость - в пучности.
Рисунок 1 - Схематическое изображение форм мод гибких роторов на податливых опорах
Для системы "ротор - подшипник с демпфированием" моды могут представлять собой пространственные кривые, вращающиеся вокруг оси ротора, особенно в случае значительного демпфирования, появляющегося, например, при использовании подшипников скольжения с жидкостной пленкой. На рисунке 2 показаны возможные формы первой и второй мод в случае демпфирования. Часто демпфированные моды можно приближенно рассматривать как собственные, т.е. в виде плоских вращающихся кривых.
Рисунок 2 - Пример форм мод колебаний в случае их демпфирования
Следует обратить особое внимание на то, что формы мод и отклик ротора на дисбаланс сильно зависят от динамических характеристик и расположения подшипниковых опор.
4.4 Воздействие дисбаланса на гибкий ротор
Распределение дисбаланса может быть выражено через модальные дисбалансы. Амплитуда каждой моды определяется соответствующим модальным дисбалансом. При вращении ротора на частоте, близкой к критической, мода, соответствующая этой частоте, обычно является доминирующей по сравнению с остальными.
Степень изгиба ротора определяется:
a) значением модального дисбаланса;
b) степенью близости рабочей частоты вращения к критической;
c) демпфированием в системе "ротор - опора".
Если уменьшить модальный дисбаланс с помощью набора сосредоточенных корректирующих масс, то амплитуда соответствующей моды также уменьшится. На этом основан метод балансировки по модам ротора, описанный в настоящем стандарте.
Значения модальных дисбалансов для заданного распределения дисбаланса определяются формами мод изгибных колебаний. Кроме того, для обобщенного ротора, изображенного на рисунке 1, влияние корректирующей массы на моду зависит от ординаты кривой формы моды в точке расположения плоскости коррекции: максимальный эффект вызывает размещение корректирующей массы в области пучности, минимальный - вблизи узла колебаний. В качестве примера рассмотрен ротор, изображенный на рисунке 1. Корректирующая масса в плоскости окажет максимальное воздействие на первую моду колебаний, в то время как ее влияние на вторую моду будет мало.
Корректирующая масса, установленная в плоскости , не окажет влияния на вторую собственную моду, но будет возбуждать две другие моды.
Корректирующие массы, установленные в плоскостях и , не окажут влияния на третью собственную моду, но будут возбуждать первую и вторую.
4.5 Цель балансировки гибкого ротора