Руководство по проведению испытаний
А.1 Введение
Достижение воспроизводимости в процессе испытаний данного типа является сложной задачей. Статистическая природа случайного сигнала, сложная частотная характеристика образца, погрешности, связанные с процедурами анализа, - все это не позволяет с определенностью сказать, согласуются ли наблюдаемая и истинная спектральные плотности мощности ускорения в рамках установленных допусков. Произвести необходимые оценки в процессе самого испытания невозможно. После его завершения необходимо осуществить сложные, требующие больших временных затрат процедуры анализа.
Можно ожидать, что основные рабочие характеристики различных цифровых систем управления вибрационными испытаниями будут схожи между собой. Используя возможные значения этих характеристик, можно провести предварительную оценку погрешности, связанной с различием между истинной и наблюдаемой спектральными плотностями мощности ускорения. Данные характеристики являются взаимосвязанными и могут быть выбраны таким образом, чтобы получить оптимальное соответствие между этими двумя функциями спектральной плотности.
Коррекция заданной спектральной плотности мощности ускорения, осуществляемая посредством цепи управления, требует нескольких шагов итерации. Длительность каждого шага итерации зависит от нескольких факторов, таких как выбранная конфигурация вычислительных средств, общая передаточная функция системы, форма заданной спектральной плотности мощности ускорения, алгоритм управления и параметры испытаний, которые могут быть выбраны до начала их проведения. Такими параметрами являются: максимальное значение частоты анализа, разрешение по частоте и уровень отсечки сигнала.
Алгоритм управления случайной вибрацией основан на компромиссе между точностью управления и временем управления (задержки сигнала в цепи управления), которое, в частности, зависит от длительности реализации. Высокая точность управления достигается только при использовании большого числа данных, что, в свою очередь, увеличивает время задержки цепи и, следовательно, замедляет реакцию на происходящие изменения формы спектральной плотности мощности ускорения. Большое влияние на время задержки цепи и на ошибки управления оказывает также значение такой характеристики, как разрешение по частоте. Как правило, более узкая полоса разрешения обеспечивает большую точность контроля и меньшую погрешность смещения, но увеличивает время управления и, кроме того, может привести к повышению случайной погрешности (см. А.2.3.3). Для того чтобы минимизировать разность между истинной и наблюдаемой спектральной плотностью мощности ускорения образца, необходимо подобрать оптимальные значения вышеуказанных параметров.
Исследования частотной характеристики образца позволяют получить важную информацию о взаимодействии вибростенда и образца. Например, с помощью таких исследований можно выявить чрезмерное усиление вибрации за счет устройств крепления образца или совпадение резонансных частот образца и устройств его крепления. Это дает возможность выбора наиболее подходящего устройства крепления и таких параметров испытаний, которые наилучшим образом обеспечат воспроизводимость испытания.
Если исследование частотной характеристики проведено не было, а используемое число спектральных линий мало, то при низкой частоте резонанса и малом значении коэффициента демпфирования может быть получена очень большая погрешность смещения. Из таблицы А.1 видно, что при коэффициенте демпфирования в испытуемом образце 0,1 и частоте резонанса, лежащей ниже 3% (см. таблицу 3), погрешность смещения будет 3 дБ и более. В таких случаях в соответствующем НД должен быть предусмотрен либо более широкий допуск на погрешность испытаний, либо проведение исследований частотной характеристики для уменьшения погрешности смещения и повышения воспроизводимости испытания. Однако до того, как исследование частотной характеристики проведено, предсказать значения коэффициента демпфирования и частот резонанса бывает довольно сложно. Поэтому предсказать, что метод без исследования частотной характеристики даст удовлетворительные результаты, можно только для образцов очень маленьких размеров с высокой степенью жесткости.
Таблица А.1 - Ограничения частоты нижнего резонанса при заданной погрешности смещения (200 линий в спектре ускорения)
Коэффициент демпфирования | Значение резонансной частоты (в процентах от ) для погрешностей смещения, дБ | |
3 | 6 | |
0,005 | 62 | 51 |
0,01 | 35 | 29 |
0,05 | 7 | 6 |
0,1 | 3 | 2,5 |
А.2 Требования к проведению испытания
А.2.1 Управления по сигналу в одной и в нескольких точках
Соблюдение требований к испытанию проверяют по характеристике спектральной плотности мощности ускорения, которую вычисляют для случайного сигнала, снимаемого в контрольной точке.
Для образцов высокой жесткости и малых размеров, например для некоторых изделий электронной техники, достаточно только одной проверочной точки, которая становится также точкой контроля.
Для образцов сложной конструкции или больших размеров, например для оборудования с широко разнесенными точками крепления, в качестве контрольной точки используют либо одну из проверочных точек, либо воображаемую контрольную точку. В случае воображаемой контрольной точки спектральную плотность мощности ускорения вычисляют на основе случайных сигналов, снимаемых в проверочных точках. Для образцов сложной конструкции или больших размеров рекомендуется использовать управление по сигналу в воображаемой контрольной точке (см. 3.4).
А.2.1.1 Управление по сигналу в одной точке
Измерения проводят в одной контрольной точке, после чего сравнивают наблюдаемую и заданную спектральные плотности мощности ускорения.
А.2.1.2 Управление по сигналу в нескольких точках
Если предусмотрено управление по сигналу в нескольких точках (или такая необходимость выявлена в ходе исследований), встает вопрос выбора стратегии управления.
А.2.1.2.1 Управление по среднему значению
При выборе данной стратегии спектральную плотность мощности ускорения вычисляют на основе измерений сигнала в каждой проверочной точке. Управление осуществляют по характеристике, являющейся средним арифметическим спектральных плотностей мощности ускорения по всем проверочным точкам.
Вычисленную характеристику сравнивают с заданной спектральной плотностью ускорения.
А.2.1.2.2 Управление по максимальному значению
При выборе данной стратегии спектральную плотность мощности ускорения вычисляют на основе максимальных значений каждой спектральной линии в спектральных плотностях мощности ускорения, измеренных для каждой проверочной точки.
В результате получают характеристику спектральной плотности мощности ускорения, представляющую собой огибающую спектральных плотностей мощности ускорения в каждой проверочной точке при их наложении друг на друга.
А.2.2 Распределение