Статус документа
Статус документа

Р 50.1.060-2006 Статистические методы. Руководство по использованию оценок повторяемости, воспроизводимости и правильности при оценке неопределенности измерений

      

     5 Принципы

5.1 Отдельные результаты и свойства процесса измерений

5.1.1 Неопределенность измерений относят к отдельным результатам измерений. Повторяемость, воспроизводимость и правильность, напротив, относят к выполнению процесса измерений или испытаний. Для анализа в соответствии со всеми частями ИСО 5725 процесс измерений или испытаний является единым методом измерений, используемым всеми лабораториями, принимающими участие в исследовании. Следует заметить, что в настоящих рекомендациях под методом измерений понимают единственную детальную процедуру (как определено в Международном словаре основных и общих терминов в метрологии (VIM) [2]). Неявно в настоящих рекомендациях предполагается, что графики, отражающие выполнение процесса, полученные при исследовании метода, соответствуют всем отдельным результатам измерений, полученным с помощью процесса. Это предположение требует подтверждающих доказательств в виде данных соответствующего контроля качества и уверенности в качестве процесса измерений (раздел 7).

5.1.2 Ниже будет показано, что дополнительно может потребоваться учитывать различия между отдельными объектами испытаний. Однако в этом случае не нужно предпринимать индивидуальные и детальные исследования неопределенности для каждого объекта испытаний при наличии хорошо охарактеризованного и устойчивого процесса измерений.

5.2 Применение данных воспроизводимости

Применение данного документа основано на двух принципах:

- стандартное отклонение воспроизводимости, полученное при совместных исследованиях, является правомерной основой для оценки неопределенности измерений (см. 2.1);

- воздействия, не наблюдаемые в процессе совместных исследований, должны быть незначительными или явно учитываться. Последний принцип является расширением основной модели, используемой для совместных исследований (см. А.2.3).

5.3. Основные уравнения статистической модели

5.3.1 Статистическая модель, на которой основано данное руководство, сформулирована в виде уравнения:

,                                       (1)


где - наблюдаемый результат, рассчитываемый по уравнению: ;

- неизвестное математическое ожидание;

- смещение, присущее методу измерений;

- лабораторная составляющая смещения;

- отклонение от номинального значения ;

- коэффициент чувствительности, равный ;

- остаточная ошибка.

Предполагается, что и подчиняются нормальному распределению с нулевым средним и дисперсиями и соответственно. Эти предположения формируют модель, используемую в ИСО 5725-2 для анализа совместных данных.

Так как наблюдаемые стандартные отклонения смещения метода , лабораторные смещения и остаточные ошибки являются полными мерами разброса в условиях совместного исследования, сумма учитывает воздействия, которые вызывают отклонения, не включенные в , или , и, таким образом, эта сумма позволяет учесть влияние действий, которые не выполнялись в ходе совместных исследований.

Примерами таких действий являются следующие:

a) подготовка объекта испытаний, выполняемая практически для каждого испытываемого объекта, но выполненная до совместных исследований;

b) влияние подвыборки в случае, когда объекты, подвергаемые совместному исследованию, были гармонизированы до исследования. Предполагается, что подчиняются нормальному распределению с нулевым математическим ожиданием и дисперсией .

Пояснения для этой модели приведены в приложении А.

Примечание - Ошибка обычно определяется как разность между установленным значением и результатом измерений. В GUM [1] "ошибку" четко отличают от "неопределенности" (разброса значений). При оценке неопределенности, однако, важно характеризовать разброс значений, вызванный случайными воздействиями, и включать его в модель. Для представленных целей это достигается включением члена, характеризующего "ошибку" с нулевым математическим ожиданием, как в уравнении (1).

5.3.2 Учитывая модель, описываемую уравнением (1), неопределенность , связанную с наблюдениями, можно оценить, применяя уравнение:

,                                          (2)