Сероводород и сернистые соединения, сульфиды и другие восстановленные формы серы не являются типичными и постоянными компонентами морских вод.
Однако при определенных условиях сероводород и сульфиды могут накапливаться в глубоких слоях моря в значительных количествах. Области с достаточно высоким содержанием сероводорода могут временами образовываться даже на небольших глубинах. Но и временное накопление сероводорода в море нежелательно, так как его появление вызывает гибель морской фауны. Вместе с тем, присутствие сероводорода в морской воде служит характерным показателем определенных гидрологических условий, а также интенсивного потребления растворенного кислорода и наличия большого количества легко окисляющихся веществ различного происхождения.
Основным источником возникновения сероводорода в море служит биохимическое восстановление растворенных сульфатов (процесс десульфатации). Десульфатация в море вызывается жизнедеятельностью особого вида анаэробных десульфатирующих бактерий, которые восстанавливают сульфаты в сульфиды, последние же разлагаются растворенной угольной кислотой до сероводорода.
Схематически этот процесс можно представить следующим образом:
CaSOCaS,
CaS+НСОСаСО + HS.
В действительности указанный процесс протекает более сложно, и в сероводородной зоне присутствует не только свободный сероводород, но и другие формы продуктов восстановления сульфатов (сульфиды, гидросульфиты, гипосульфиты и др.).
В гидрохимической практике содержание восстановленных форм соединений серы принято выражать в эквиваленте сероводорода. Лишь в особых специально поставленных исследованиях различные восстановленные формы серы определяются раздельно. Эти определения здесь не рассматриваются.
Вторым источником возникновения сероводорода в море служит анаэробный распад богатых серой белковых органических остатков отмерших организмов. Содержащие серу белки, распадаясь в присутствии достаточного количества растворенного кислорода, окисляются, и содержащаяся в них сера переходит в сульфат-ион. В анаэробных условиях распад серосодержащих белковых веществ ведет к образованию минеральных форм серы, т.е. сероводорода и сульфидов.
Случаи временного возникновения анаэробных условий и связанного с ними накопления сероводорода наблюдаются в Балтийском и Азовском морях, а также в некоторых губах и заливах других морей.
Классическим примером морского бассейна, зараженного сероводородом, является Черное море, где лишь верхний сравнительно тонкий поверхностный слой свободен от сероводорода.
Возникающие в анаэробных условиях сероводород и сульфиды легко окисляются при поступлении растворенного кислорода, например при ветровом перемешивании верхних, хорошо аэрированных слоев воды с глубинными водами, зараженными сероводородом.
Поскольку даже временное накопление сероводорода и сернистых соединений в море имеет существенное значение как показатель загрязнения вод и возможности возникновения заморов морской фауны, наблюдения за его появлением совершенно необходимы при изучении гидрохимического режима моря.
1. Объемно-аналитический метод*
________________
* Настоящая методика метрологически не аттестована.
1.1. Сущность метода анализа
Сероводород присутствует в морской воде в виде растворенной, слабодиссоциированной сероводородной кислоты HS, а также в виде гидросульфидного HS и сульфидного S ионов.
До настоящего времени вопрос о равновесии системы сероводорода и о формах сероводорода в морской воде исследован далеко не достаточно.
Используемый в настоящее время в практике морских исследований метод определения растворенного сероводорода в действительности позволяет определить суммарное содержание сернистых соединений (восстановленные формы серы), выражаемое в эквиваленте сероводорода [1, 2].
Метод количественного определения сероводорода основан на реакции окисления его иодом:
S+ IS+ 2I. (1)
При этом S окисляется до свободной S, а свободный иод переходит в ион I. Количественно эта реакция протекает лишь в кислой среде. В морской воде, обладающей слабощелочной реакцией, окисление иодом S может идти дальше до образования сульфатного иона:
S+ 4I+ 8OHSO+ 8I+ 4HO.
Расход иода при этом окажется выше, чем необходимо для окисления растворенного сероводорода. Чтобы избежать этих ошибок, определение сероводорода ведут в кислой среде. При подкислении ионы HS и S переходят в HS, и, таким образом, в подкисленной пробе весь содержащийся в морской воде сероводород будет находиться в виде слабодиссоциированной сероводородной кислоты HS.