Односторонний предикционный интервал для нормальной совокупности с известным стандартным отклонением имеет вид или .
Коэффициент предикционного интервала зависит от , от объема будущей выборки и от уровня доверия . Значения приведены в таблицах приложения С.
Пример - Длины глазурованных керамических трубок диаметром 150 мм подчиняются нормальному распределению со стандартным отклонением 4,49 мм. Выборка из 50 трубок имеет среднее 1760,60 мм. Необходимо определить, для какой длины можно утверждать с уровнем доверия 99%, что все следующие 1000 трубок ее превысят.
В таблице С.4 для n=50 и m=1000 указано значение k=4,306. Поэтому для будущей выборки с объемом m=1000
=1760,60-4,306х4,49=1741.
Следовательно, можно быть уверенным с уровнем доверия 99%, что ни одна из трубок будущей выборки в 1000 шт. не будет иметь длину менее чем 1741 мм.
Эта информация может быть полезной, если изготовитель заботится об обеспечении гарантии для его продукции. В данном примере изготовитель может без опасений гарантировать длины не менее 1740 мм.