Статус документа
Статус документа

РД 52.11.639-2002

РУКОВОДЯЩИЙ ДОКУМЕНТ


МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Методика оценки эффективности льдообразующих реагентов
и пиротехнических составов в лабораторных условиях

     

Дата введения 2003-01-01

Предисловие

1 РАЗРАБОТАН Центральной аэрологической обсерваторией (ЦАО) Федеральной службы России по гидрометеорологии и мониторингу окружающей среды (Росгидромет)

2 РАЗРАБОТЧИКИ Н.О.Плауде, канд. физ.-мат. наук, заведующий лабораторией, руководитель темы; Е.В.Сосникова, канд. физ.-мат. наук, науч. сотрудник; Н.П.Гришина, инженер

3 ВНЕСЕН Отделом активных воздействий и государственного надзора УСНК Росгидромета

4 ОДОБРЕН Центральной комиссией по приборам и методам наблюдений (ЦКПМ) Росгидромета, протокол N 2 от 28.04.01 г.

5 УТВЕРЖДЕН Руководителем Росгидромета 19.07.02 г.

6 ЗАРЕГИСТРИРОВАН Центральным конструкторским бюро гидрометеорологического приборостроения (ЦКБ ГМП) за номером РД 52.11.639-2002 от 23.07.02 г.

7 ВЗАМЕН РД 52.11.41-84 "Методические указания. Методика измерения льдообразующей активности аэрозолей в лабораторных условиях"

     1 Область применения


Настоящие методические указания устанавливают лабораторную методику определения эффективности (активности) льдообразующих реагентов и пиротехнических составов, содержащих льдообразующие реагенты, которые используются в практике архивных воздействий (АВ) на переохлажденные облака и туманы.

Настоящие методические указания предназначены для использования научно-исследовательскими учреждениями, военизированными службами АВ и другими организациями Росгидромета, осуществляющими поиск и внедрение новых льдообразующих реагентов, разработку пиротехнических составов с льдообразующими реагентами и контроль пиротехнических средств АВ, производимых промышленностью.

     2 Определения


В настоящих методических указаниях применяются следующие термины с соответствующими определениями в соответствии с ОСТ 52.11.25-86 Охрана природы. Атмосфера. Активные воздействия на гидрометеорологические процессы.

Активное воздействие (АВ) на облако (туман) - преднамеренное воздействие на облако (туман) с целью изменения естественного хода микрофизических и динамических процессов (рассеяния облаков или туманов, ускорения осадкообразования, увеличения осадков, предотвращения или прерывания градообразования и т.п.).

Выход активных частиц - число ледяных кристаллов, образующихся в облаке при данной температуре в расчете на единицу массы льдообразующего реагента (пиротехнического состава).

Льдообразующая активность (эффективность) реагента - способность частиц реагента образовывать в переохлажденном облаке (тумане) ледяные кристаллы, характеризуемая выходом активных частиц.

Льдообразующие ядра - частицы искусственного аэрозоля, вызывающие образование ледяных частиц (кристаллов) в облаках и туманах при температуре ниже 0 °С.

Льдообразующий аэрозоль - дисперсная система, состоящая из частиц льдообразующего вещества и несущего газа.

Льдообразующий реагент - вещество (смесь веществ), которое используется в работах по АВ на облака (туманы) с целью получения ледяных частиц.

Перезасев - существенное превышение оптимальной дозировки реагента, приводящее к снижению эффективности воздействия.

Пиротехнический состав для АВ - смесь пиротехнических компонентов и льдообразующего реагента, при горении которой образуется льдообразующий аэрозоль.

Температурный порог активности реагента - максимальная температура, при которой в переохлажденном облаке (тумане) при введении льдообразующего реагента образуются ледяные кристаллы.

     3 Описание методики

3.1 Принцип определения эффективности льдообразующего реагента

Мерой эффективности льдообразующего реагента является выход (количество) активных частиц от единицы массы реагента (далее выход), переведенного в аэрозоль тем или иным способом, в частности сжиганием льдообразующего реагента в пиротехническом составе [1]. Принцип измерения эффективности льдообразующего реагента состоит в определении числа ледяных кристаллов, образующихся при введении известного количества исследуемого реагента в виде аэрозоля в переохлажденный водный туман [2]. Туман создают в охлаждаемой облачной камере с помощью введения горячего водяного пара или механического диспергирования воды. Исследуемый реагент предварительно переводят в аэрозоль в отдельном резервуаре - аэрозольной камере. Кристаллы, оседающие на дне облачной камеры, попадают на пленку репликообразующего вещества, которая после затвердевания сохраняет их отпечатки, или в микротермостат, где кристаллы сохраняются в течение времени, достаточного для их подсчета с помощью оптического микроскопа.

Минимальное и максимальное измеряемые значения выхода активных частиц зависят от метода регистрации частиц, объема используемой аэрозольной камеры и допустимого (по средствам измерения) количества переводимого в аэрозоль реагента. В данной методике они составляют соответственно 10 и 10 г.

3.2 Диапазон изменения определяемой величины

Минимальное возможное значение выхода активных частиц составляет 0 г. В качестве верхнего предела может рассматриваться теоретический выход активных частиц для наиболее активного льдообразующего реагента - йодистого серебра - при наименьшей температуре минус 25 °С, равный 10 г.

3.3 Погрешность методики

Погрешность методики определяется основной и дополнительной погрешностями.

3.3.1 Основная погрешность

Основная погрешность методики складывается из систематической и случайной составляющих.

3.3.1.1 Систематическая составляющая основной погрешности обусловлена потерями аэрозольных частиц (их коагуляцией и осаждением) во время подготовительных операций по введению аэрозоля в переохлажденный туман и наличием неустранимых температурных градиентов в рабочем объеме облачной камеры, приводящих к активации части льдообразующих ядер при температуре, отличной от температуры опыта, регистрируемой в центре облачной камеры. При обычной продолжительности подготовительных операций 1-3 мин суммарные потери аэрозольных частиц с начальной концентрацией менее 10 см и размерами менее 5·10 см, согласно экспериментальной оценке, не превышают 5%. Систематическая составляющая основной погрешности, связанная с наличием градиентов температуры в облачной камере, зависит от вида температурной зависимости выхода и при температурных градиентах менее 0,03 °С/см не превышает 5% для тех участков , где выход мало меняется с температурой ( °С), увеличиваясь до 25% вблизи температурного порога активности реагента, где °С.

3.3.1.2 Случайная составляющая основной погрешности складывается из:

1) случайной погрешности в определении исходной массы переводимого в аэрозоль реагента*;

2) случайной погрешности определения объема пробы исследуемого аэрозоля;

3) погрешности определения числа активных частиц (ледяных кристаллов);

4) погрешности измерения температуры переохлажденного тумана.

___________

* Потери массы в процессе диспергирования реагента относятся к систематическим погрешностям методов диспергирования и в настоящей методике не рассматриваются.

Две первые погрешности определяются погрешностями весов и шприца - отборника проб, и каждая из них не превышает ±10%.

Погрешность определения числа ледяных кристаллов состоит из погрешности подсчета кристаллов в поле зрения микроскопа , не превышающей ±5%, и погрешности , обусловленной ограниченностью выборки - флуктуациями числа кристаллов , попадающих в поле зрения микроскопа. Поскольку определяется по закону Пуассона как (где - среднее число кристаллов в поле зрения, - число полей), она может быть снижена до уровня не более ±15% путем увеличения числа обсчитываемых полей зрения. Случайная составляющая погрешности измерения, связанная с погрешностью в определении температуры переохлажденного тумана , зависит от характера температурной зависимости выхода . Для наиболее типичных ее участков, где меняется от 0,05 до 0,1 °С, она составляет ±(10... 20)%. В области резкого изменения при изменении температуры, где °С, погрешность возрастает до 80% и более.

3.3.2 Дополнительная погрешность

Дополнительная погрешность измерения выхода связана с изменением характеристик состояния внешней среды - температуры и влажности в аэрозольной камере - и может возникать при определении выхода для льдообразующих реагентов, активность которых сильно зависит от пересыщения водяного пара, в случае невыполнения условий применения методики, указанных в 4.2.4.4. При этом измеренное значение выхода может оказаться завышенным на несколько порядков.

3.4 Производительность методики

Длительность одного опыта составляет от 40 до 50 мин, что с учетом подготовительных операций позволяет проводить 6-8 измерений в течение рабочего дня (8 ч).

3.5 Метеорологические условия в лабораторном помещении

Необходимыми метеорологическими условиями использования методики являются:

Температура воздуха в помещении, °С

25±10

Относительная влажность воздуха, %

от 25 до 90

Атмосферное давление

нормальное

     4 Требования к оборудованию, средствам измерения и порядок выполнения измерений

4.1 Оборудование и средства измерений

Необходимым оборудованием в методике являются охлаждаемая облачная камера и камера для получения аэрозоля (аэрозольная камера). Средствами измерений являются термометр для измерения температуры в рабочем объеме облачной камеры, измеритель влажности, устройство (шприц) для дозированного отбора проб аэрозоля, секундомер, весы для взвешивания образцов реагента (пиросостава) и микроскоп для подсчета ледяных кристаллов.

4.1.1 Облачная камера

4.1.1.1 Рабочий объем облачной камеры должен быть от 100 до 1000 л.

4.1.1.2 Температура в рабочем объеме должна регулироваться в пределах от минус 25 до 25 °С.

4.1.1.3 Время установления минимальной температуры минус 25 °С должно составлять не более 5 ч.

4.1.1.4 Облачная камера должна быть оборудована измерителем температуры, вентилятором для выравнивания температуры и концентрации частиц, устройством для получения тумана (парогенератором), устройством для улавливания ледяных кристаллов, осветителем с параллельным пучком света типа ОИ-9, ОИ-21 для визуального наблюдения за процессом кристаллизации, люками для ввода пробы аэрозоля и выполнения других ручных операций.

4.1.2 Аэрозольная камера

Аэрозольная камера объемом от 0,5 до 2,0 м для подготовки исследуемого аэрозоля должна иметь вентилятор для выравнивания концентрации частиц и подсоединение к вытяжной вентиляции для очистки камеры от аэрозоля за время не более 30 мин.

4.1.3 Средства измерений

4.1.3.1 Измерение температуры в облачной камере должно производиться измерителями температуры с диапазоном измеряемых температур от минус 25 до 25 °С и погрешностью показаний не более ±0,3 °С.

4.1.3.2 Измерение влажности в аэрозольной камере производится любым измерителем влажности (гигрометром, психрометром) с погрешностью показаний не более ±5%.

Доступ к полной версии документа ограничен
Этот документ или информация о нем доступны в системах «Техэксперт» и «Кодекс».
Нужен полный текст и статус документов ГОСТ, СНИП, СП?
Попробуйте «Техэксперт: Лаборатория. Инспекция. Сертификация» бесплатно
Реклама. Рекламодатель: Акционерное общество "Информационная компания "Кодекс". 2VtzqvQZoVs