Статус документа
Статус документа

     
РД 52.11.640-2002

     

РУКОВОДЯЩИЙ ДОКУМЕНТ


МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Применение метода искусственного рассеяния
переохлажденных туманов на автодорогах

     

Дата введения 2003-01-01

     

Предисловие

1 РАЗРАБОТАН Центральной аэрологической обсерваторией (ЦАО) Федеральной службы России по гидрометеорологии и мониторингу окружающей среды (Росгидромет)

2 РАЗРАБОТЧИКИ М.П.Власюк, канд. физ.-мат. наук, руководитель темы; Г.П.Берюлев, канд. физ.-мат. наук; В.И.Черныш; Н.Г.Мукий; Н.М.Кочетов; Л.А.Короткова, нормоконтролер

3 ВНЕСЕН Отделом активных воздействий и государственного надзора УСНК Росгидромета

4 ОДОБРЕН Центральной комиссией по приборам и методам наблюдений (ЦКПМ) Росгидромета, протокол N 2 от 30 июня 2002 г.

5 УТВЕРЖДЕН Руководителем Росгидромета 19 июля 2002 г.

6 ЗАРЕГИСТРИРОВАН Центральным конструкторским бюро гидрометеорологического приборостроения (ЦКБ ГМП) за номером РД 52.11.640-2002 от 23 июля 2002 г.

7 ВВЕДЕН ВПЕРВЫЕ

     1 Область применения


Настоящие методические указания устанавливают общий порядок применения метода искусственного рассеяния переохлажденных туманов на автодорогах с использованием жидкого азота (далее азотный метод) с целью снижения аварийности автотранспорта в условиях тумана.

Настоящие методические указания подлежат применению в специализированных подразделениях Росгидромета, а также в других организациях, выполняющих работы по искусственному рассеянию переохлажденных туманов на автодорогах.

     2 Определения и сокращения


В настоящих методических указаниях применяют следующие термины с соответствующими им определениями и сокращениями.

Азотный метод - совокупность приемов и операций, реализующих способ искусственного рассеяния переохлажденного тумана с помощью технических средств, использующих жидкий азот в качестве хладореагента.

Азотные генераторы (АГ) - специальные криогенные установки для создания низкотемпературных струй воздуха, локально вводимых в переохлажденный туман с целью мгновенного замораживания капель тумана и тем самым превращения их в ядра искусственной кристаллизации воды в этом тумане.

Активные воздействия (АВ) на переохлажденный туман на автодороге - преднамеренное изменение состояния переохлажденного тумана в желаемом направлении путем термического (криогенного) искусственного воздействия на него с целью улучшения видимости на автодороге.

Зона улучшенной видимости (ЗУВ) - объем воздуха в переохлажденном тумане, в котором в результате искусственного воздействия видимость улучшается до уровня обеспечения безопасности движения автотранспорта.

     3 Азотный метод

     3.1 Физический принцип искусственного воздействия

3.1.1 Успех применения азотного метода зависит главным образом от уровня понимания его физического принципа и сущности, а также заложенных в нем потенциальных возможностей АВ на переохлажденный туман, которые могут эффективно использоваться, в частности, по мере накопления опыта применения метода в конкретном и, как правило, сложном комплексе физико-географических, погодно-климатических, дорожно-транспортных, экологических, социально-экономических условий [1-3].

3.1.2 С физической точки зрения переохлажденный жидкокапельный туман является коллоидной системой (аэрозолем), одновременно находящейся в двух фазах - дисперсной (жидкокапельной) и дисперсионной (парообразной). Жидкокапельная фаза существует в виде множества переохлажденных (при отрицательной температуре до минус 40 °С) капелек очень малых размеров от 10 до 100 мкм и распределена в другой фазе - парообразной, существующей в виде водяного пара (частички размером около 1 мкм) [1, 2].

3.1.3 Между частицами воды двух фаз осуществляется равновесный диффузионный обмен, при котором переход газообразных частичек воды на капельки жидкокапельной фазы уравновешивается обратным переходом капелек жидкокапельной фазы в парообразную фазу. Количественно равновесный переход частичек воды между фазами определяется значением давления насыщения, выше которого большее число газообразных частичек парообразной фазы при заданной отрицательной температуре не может переходить в жидкокапельную фазу пересыщенного тумана, и наоборот.

3.1.4 Основным механизмом преобразования водяного пара переохлажденного тумана в жидкокапельную фазу является конденсация пара, сопровождающаяся выделением скрытой теплоты парообразования.

3.1.5 Другой крайней коллоидной формой существования переохлажденного тумана является ледяной туман, в котором дисперсную фазу составляют кристаллики льда размером от 10 до 100 мкм, а дисперсионную фазу - частички водяного пара воздуха размерами около 1 мкм. В этом случае преобразование частичек водяного пара воздуха непосредственно в ледяную фазу осуществляется по механизму сублимации водяного пара, при котором процесс преобразования сопровождается выделением скрытой теплоты не только парообразования, но и плавления. Поэтому в ледяном тумане для покрытия затрат скрытой энергии в процессе установления обменного равновесия между парообразной и ледяной фазами потребуется участие большего количества парообразных частичек, чем в случае установления аналогичного обменного равновесия между частичками парообразной и жидкокапельной фаз в переохлажденном жидкокапельном тумане.

3.1.6 Количественной мерой установления обменного равновесия между парообразной, жидкокапельной и ледяной фазами воды в переохлажденных туманах является значение давления насыщенного водяного пара (гПа) соответственно над водой и надо льдом . Ниже представлены значения и для жидкокапельных и ледяных туманов при некоторых отрицательных значениях температуры [1]:

Температура воздуха, °С

0

-10

-20

-30

-40

Давление насыщения водяного пара гПа:

     над водой

6,10

2,85

1,27

0,50

0,19

     надо льдом

6,10

2,60

1,03

0,37

0,13

3.1.7 При некотором искусственном (виртуальном) смешении жидкокапельного и ледяного туманов установившиеся ранее в каждом из них равновесия обменных процессов между дисперсной и дисперсионной фазами будут, очевидно, нарушены. В итоге давление водяного пара в образовавшемся “смешанном“ тумане окажется ненасыщенным по отношению к его ледяной фазе, оставаясь в то же время несколько пересыщенным по отношению к жидкокапельной фазе. В результате начинается интенсивный процесс “донасыщения“ пара надо льдом, в ходе которого на ледяные кристаллики перекачиваются газообразные частички воды как самого воздуха тумана, так и частички, испаряющиеся с поверхностей жидких капель, и сами ледяные кристаллы будут превращаться в центры кристаллизации газообразной и жидкокапельной влаги переохлажденного тумана.

3.1.8 Указанный процесс сублимации воды на ядрах кристаллизации будет длиться до тех пор, пока ледяные кристаллы, постепенно увеличиваясь и вырастая до размеров твердых осадков (например, в виде снежинок, крупы), не осядут на землю. Сублимационный процесс завершается полным преобразованием газообразной и жидкокапельной фаз воды переохлажденного тумана в ее кристаллическую фазу и осаждением последней на землю в виде снега или снежной крупы.

3.1.9 Таким образом, физический принцип искусственного воздействия на туман состоит в учете и целенаправленном использовании существенных различий в механизмах реализации фазовых переходов пар-вода и пар-лед, объективно присущих переохлажденным туманам как многофазным коллоидным системам.

     3.2 Сущность азотного метода

3.2.1 Азотный метод основан на создании в локальных объемах подлежащего искусственному рассеянию переохлажденного тумана особых зон охлажденного воздуха. В этих зонах искусственно создаются необходимые условия для протекания сублимационных процессов преобразования газообразной и жидкокапельной фаз реального тумана в ледяную фазу, при которых осуществляется кристаллизация тумана с формированием твердых осадков (снежинок, крупы) и их выпадением на подстилающую поверхность (в том числе и на автодорогу).

3.2.2 Для создания локальных особых зон охлаждения воздушной среды тумана в методе используется жидкий азот, который диспергируется в эту среду с помощью АГ. Эти генераторы создаются на базе выпускаемых промышленностью стандартных емкостей для хранения жидкого азота, которые дополняются специальными насадками, обеспечивающими дозированное диспергирование (распыление) жидкого и парообразного азота из емкости (термостата) в окружающий туман.

3.2.3 В первых работах ЦАО по рассеянию переохлажденных туманов на автодорогах положительно зарекомендовали себя малолитражные генераторы мелкодисперсных частиц льда наземные (ГМЧЛ-Н) емкостью 40 или 175 л типа ГМЧЛ-Н-40-С (стационарный) и ГМЧЛ-Н-40-М (мобильный), а также крупнолитражные типа ГМЧЛ-Н-175-С и ГМЧЛ-Н-175-М. В настоящее время работы по совершенствованию конструкций АГ продолжаются.

3.2.4 На рисунке 1 представлена функциональная схема устройства АГ типа ГМЧЛ-Н [4, 5].

- частички парообразного азота, воды; б - капельки переохлажденного тумана;
в - ледяные кристаллики

     
А - термостат; Б - насадка; 1 - жидкий азот; 2 - верхняя часть термостата; 3 - воздушный факел; 4 - радиатор;
5 - трубопровод; 6 - жиклер; 7 - клапан; 8 - струя жидкого и парообразного азота; 9 - распылитель; 10 - туман

     
Рисунок 1 - Функциональная схема устройства АГ типа ГМЧЛ-Н и принцип его действия



3.2.4.1 АГ состоит из двух частей: термостата А и насадки Б, включающей детали 4-7. Термостат служит для хранения жидкого азота 1 при температуре минус 190 °С, а насадка - для формирования на выходе распылителя 9 низкотемпературной воздушной области 3 с необходимой геометрической конфигурацией в переохлажденном тумане 10.

3.2.4.2 AГ функционирует следующим образом. С помощью радиатора 4 в верхней части термостата 2 создается избыточное давление паров азота по сравнению с нормальным давлением наружного воздуха в тумане 10. Благодаря возникающей при этом на торцах жиклера 6 и распылителя (форсунки) 9 трубопровода разности давлений в самом трубопроводе 5 создается струя 8 из смеси жидкого и парообразного азота, которая при открытом клапане 7 будет выходить через распылитель 9 непосредственно в зону переохлажденного тумана 10, создавая в ней локальную низкотемпературную область (факел) 3. Требуемая геометрическая конфигурация этой области формируется специальной конструкцией распылителя 9. Выходя на большой скорости из распылителя 9, переохлажденная струя азота 8 создает в переохлажденном факеле 3 разрежение, благодаря которому происходит подсос в эту зону наружного воздуха с туманом 10 и осуществляется перемешивание азота с воздухом (показано стрелками). По мере удаления от распылителя 9 скорость движения струи сжатого азота 8 в факеле 3 уменьшается, объем перемешивающихся газов увеличивается, а сам факел 3 расширяется.

3.2.4.3 Динамический процесс формирования геометрической конфигурации факела 3 (на выходе форсунки 9) и ее последующей эволюции при взаимодействии азотной струи с переохлажденным туманом 10 и ее перемешивании с ним приводит к образованию внутри факела своеобразных температурных слоев перемешивания, выделенных на рисунке 1 внутри контура факела 3 соответствующими пунктирными изолиниями температуры.

3.2.5 На рисунке 2 показаны этапы эволюции структуры переохлажденного тумана при его последовательном взаимодействии с разными участками непрерывно создаваемого АГ факела переохлажденного воздуха.


- частички парообразного азота, воды; б - капельки переохлажденного тумана; в - ледяные кристаллики

     
Рисунок 2 - Этапы (1-5) эволюции структуры переохлажденного тумана при его последовательном
взаимодействии с разными участками факела переохлажденного воздуха, непрерывно создаваемого АГ



Доступ к полной версии документа ограничен
Этот документ или информация о нем доступны в системах «Техэксперт» и «Кодекс».
Нужен полный текст и статус документов ГОСТ, СНИП, СП?
Попробуйте «Техэксперт: Лаборатория. Инспекция. Сертификация» бесплатно
Реклама. Рекламодатель: Акционерное общество "Информационная компания "Кодекс". 2VtzqvQZoVs