Статус документа
Статус документа

РД 52.04.186-89 Руководство по контролю загрязнения атмосферы

5.1.1. Методы и средства измерения


Для наблюдения за загрязнением атмосферы в настоящем руководстве помещены методики, основанные на использовании следующих физико-химических и физических методов: фотоколориметрии, атомно-абсорбционной спектрофотометрии, рентгенофлуоресцентный, квазилинейчатых спектров люминесценции, потенциометрии, газовой хроматографии (ГХ).

Большая часть приведенных методик оределения концентраций неорганических веществ и некоторых органических основана на фотометрическом методе анализа, включающем химическое преобразование определяемого вещества в окрашенное соединение и измерение оптической плотности его раствора. Наличие большого количества достаточно избирательных химических реакций, простота, доступность и надежность требующейся аппаратуры, высокая чувствительность и производительность делают этот метод особенно удобным для широкого использования при проведении серийных анализов проб, отобранных из воздуха.

Практически все приведенные в данном руководстве фотометрические методики разработаны с использованием двухлучевых фотоколориметров ФЭК-56, ФЭК-56М, предусматривающих уравнивание интенсивностей двух световых потоков при помощи переменной диафрагмы. В последнее время широкое распространение получили однолучевые фотоколориметры КФК-2 и КФК-2МП, КФК-3, которые имеют лучшие метрологические характеристики, проще в работе и, как правило, могут заменить ФЭК-56М. Следует отметить, что при использовании фильтрового прибора иной марки, чем это указано в методике, необходимо произвести подбор светофильтра. Способ подбора описан в инструкции к каждому фотоколориметру.

Применение вместо фотоколориметров спектрофотометров в ряде случаев дает возможность улучшить метрологические характеристики методик благодаря более точной настройке на максимум светопоглощения, однако их стоимость обычно существенно выше. Поэтому для проведения серийных анализов использование спектрофотометров в большинстве случаев не оправдано. Возможность достаточно точной настройки на нужную длину волны света, относительно невысокая стоимость, небольшие масса и габариты удачно сочетаются в фотометре КФК-3. Этот прибор имеет к тому же проточную кювету и предоставляет возможность вывода на встроенный дисплей или печатающее устройство результатов измерения сразу в единицах концентрации. Все это делает КФК-3 особенно удобным для проведения серийных анализов.

Еще большее снижение затрат труда на проведение анализа обеспечивают фотометры с автоматической подачей проб, установленных в специальные кассеты. При их использовании производительность повышается до 100 и более анализов подготовленных проб в час. Однако такие приборы целесообразно применять в лабораториях с большим объемом работ (не менее 35000 анализов в год).

В качестве основного метода определения концентрации металлов в аэрозолях и осадках рекомендуется атомно-абсорбционная спектрофотометрия с пламенной и термической ионизацией пробы. Этот метод, особенно тот вариант, в котором используется термическая атомизация, обладает достаточно высокой чувствительностью и позволяет определять большое число металлов.

Некоторую сложность представляет переход от определения одного металла к определению другого, поскольку при этом обычно требуется смена источника излучения. Поэтому при серийных анализах удобнее использовать несколько приборов, каждый из которых настроен на измерение концентрации одного металла. Атомно-абсорбционные спектрофотометры обеспечивают высокую производительность труда (несколько десятков проб в час), но имеют высокую стоимость. Это обусловливает целесообразность их использования только в специализированных централизованных лабораториях с большим объемом работ или в городах, где ввиду большой вероятности появления загрязняющих веществ в концентрациях выше ПДК необходим оперативный анализ каждой пробы. Организацию централизованного контроля облегчает также простота пересылки проб аэрозолей, отобранных на фильтры, и хорошая сохраняемость проб.

Метод рентгенофлуоресцентный с использованием полупроводникового детектора предназначен только для централизованных лабораторий. Он позволяет существенно увеличить объем информации, получаемой при анализе одной пробы, а также определять концентрацию таких вредных веществ, как мышьяк и селен. Кроме того, метод не требует специальной подготовки проб, они не портятся в процессе измерения и могут анализироваться повторно.

Наряду с атомно-абсорбционным и рентгенофлуоресцентным методами для определения ряда металлов приводятся фотометрические методики, не требующие сложной аппаратуры. Однако применять их следует лишь при невозможности использовать первые два метода.

Для некоторых соединений наряду с фотометрическими приведены потенциометрические методики анализа. Поскольку последние являются более простыми в исполнении и надежными, им следует отдать предпочтение при наличии соответствующей аппаратуры.

Дли проведения режимных наблюдений за концентрациями 3,4-бензпирена выбран вариант метода квазилинейчатых спектров люминесценции замороженных растворов с использованием единого стандарта. В то же время, для проведения научных исследований и для анализа проб, сильно загрязненных промышленными выбросами, приведен более сложный для серийного анализа вариант с использованием добавок. Для определения концентраций нескольких полиароматических углеводородов из одной пробы приведен метод высокоэффективной жидкостной хроматографии.

Для определения концентраций большинства органических веществ выбран метод газовой хроматографии. Его основным достоинством по сравнению с фотометрическим методом является возможность определения из одной пробы нескольких веществ, в том числе принадлежащих к одному гомологическому ряду. Кроме того, чувствительность хроматографического метода при определении концентраций многих веществ выше, чем чувствительность фотометрического. Он позволяет существенно расширить номенклатуру определяемых в атмосфере вредных примесей. Вместе с тем хроматографический метод имеет ряд ограничений, которые должны учитываться при планировании его использования: сложность и высокая стоимость аппаратуры, необходимость высококвалифицированного обслуживания и небольшая производительность (1-3 пробы в час).

Настройка хроматографа на каждую новую методику требует значительного времени и трудозатрат. В связи с этим хроматографы в первую очередь целесообразно применять в специализированных централизованных лабораториях, имеющих достаточное число приборов, чтобы каждый из них использовался для анализа одной группы веществ. Для определения ряда хлорированных углеводородов приведены две хроматографические методики, различающиеся вспомогательными устройствами.

По мере совершенствования приборов и методов в лаборатории периодически возникает необходимость перехода на новую методику. При переходе с одной методики измерения данного вещества или группы веществ на другую необходимо в каждой лаборатории провести параллельные анализы в течение не менее одного месяца для того, чтобы установить, имеются ли различия в результатах. При наличии расхождений необходимо проанализировать их причины и выяснить возможность установления переходного коэффициента для сохранения непрерывности ряда. Параллельные измерения следует производить тщательно, из одного воздуховода, предварительно проверив правильность работы расходомеров. Результаты измерений и их аналитическое обсуждение направляют в головную организацию для получения разрешения на переход к новой методике.

В каждой методике наряду с принципом метода измерения указаны конкретные средства измерения, с применением которых она разработана, однако они могут быть заменены аналогичными с погрешностями, не превышающими погрешность рекомендуемых. Применяемые средства измерений должны быть поверены (аттестованы) в сроки, установленные ГОСТ 8.002-71,* иметь клеймо и свидетельство о поверке.

_______________

* Отменен. На территории РФ действуют ПР 50.2.002-94. - Примечание "КОДЕКС".