Профессиональное решение
для специалистов строительной отрасли

ГОСТ Р 52240-2004

Группа Б99

     

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ


МАСЛА СМАЗОЧНЫЕ И ПРИСАДКИ

Методы определения фосфора

Lubrication oils and additives. Test methods for phosphorus



ОКС 75.160.20

ОКСТУ 0209

Дата введения 2005-01-01

     

Предисловие

1 РАЗРАБОТАН Техническим комитетом по стандартизации ТК 31 "Нефтяные топлива и смазочные материалы" (ОАО "ВНИИНП")

ВНЕСЕН Госстандартом России

2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 9 марта 2004 г. N 105-ст

3 Настоящий стандарт представляет собой аутентичный текст ASTM D 1091-2000 "Методы определения фосфора в смазочных маслах и присадках"

4 ВВЕДЕН ВПЕРВЫЕ

     1 Область применения

1.1 Настоящий стандарт распространяется на товарные смазочные масла, присадки к ним и устанавливает методы определения массовой доли фосфора.

Методы испытания не ограничивают типы соединений фосфора, которые могут присутствовать в испытуемом образце, например соединения трехвалентного и пятивалентного фосфора, фосфорины, фосфаты, фосфонаты, сульфиды фосфора и т.д., так как все они количественно превращаются в водный раствор иона ортофосфата посредством окисления образца в процессе выполнения анализа.

1.2 Требования техники безопасности приведены в приложении Б.

1.3 Значения, установленные в единицах системы СИ, считаются стандартными.

     2 Нормативные ссылки


В настоящем стандарте использованы ссылки на нормативные документы, указанные в приложении В.

     3 Сущность методов

3.1 Органическую составляющую в образце удаляют, а фосфор переводят в фосфат-ион окислением серной кислотой, азотной кислотой и перекисью водорода. Затем определяют массовую долю фосфора фотометрическим (молибдено-диванадиевым) методом (разделы 7-18) или гравиметрическим методом (разделы 7-11 и 19-25).

3.2 Фотометрический метод используют при определении массовой доли фосфора до 2%, а гравиметрический - при определении массовой доли фосфора 2% и более.

     4 Применение метода

4.1 Массовую долю фосфора в смазочных маслах или присадках к ним используют для прогнозирования эксплуатационных характеристик нефтепродукта.

     5 Чистота реактивов

5.1 Чистота реактивов

Используют реактивы квалификации х.ч.

Могут быть использованы реактивы других марок при условии предварительного подтверждения достаточно высокой степени чистоты, сохраняющей точность определения.

5.2 Чистота воды

Если нет иных указаний, применяют воду типов II и III по спецификации [1].

     6 Отбор проб

6.1 Пробы отбирают в соответствии с Руководствами [2], [3] приложения В.

6.2 Проба должна быть представительной для испытуемого продукта.     

    ОКИСЛЕНИЕ ОБРАЗЦА

     7 Назначение

7.1 В образцах товарных смазочных масел, пакетах присадок к ним удаляют органическую составляющую и превращают фосфор в фосфат-ион.

     8 Сущность метода

8.1 Окисление фосфорорганической составляющей в образце серной кислотой, азотной кислотой и перекисью водорода и превращение ее в фосфат-ион.

Непрореагировавшую перекись водорода удаляют, разбавляя водой и выпаривая несколько раз до густого белого дыма.

     9 Аппаратура

9.1 Колбы для кипячения - колбы Кьельдаля вместимостью 300 см с притертой пробкой.

9.2 Подставка для колбы Кьельдаля, установленная таким образом, чтобы колба находилась под углом 45° для одной или более колб вместимостью 300 см, при этом необходимо, чтобы тепло непосредственно подавалось только ко дну колбы, а ее корпус и горлышко были изолированы от источника нагрева. Горлышко колбы должно на охлаждаться воздухом комнатной температуры, при этом воздушный поток лучше направлять на горлышко колбы. Источниками тепла являются пламя газовой горелки или электрообогреватель высокой мощности.

     10 Реактивы

10.1 Перекись водорода (), 30%-ный раствор, с массовой долей фосфора не более 0,0002%.

(Предупреждение. Концентрированный раствор является высокотоксичным и сильным окислителем).

10.2 Азотная кислота () концентрированная, относительная плотность 1,42.

10.3 Серная кислота () концентрированная, относительная плотность 1,84.

10.4 Белое масло (вазелиновое, белое медицинское), не содержащее фосфор.

10.5 QC-образцы контроля качества представляют собой части одного или более жидких нефтепродуктов, которые стабильны и представительны для испытуемых образцов. Эти QC-образцы можно использовать для проверки обоснованности испытательного процесса (см. раздел 26).

     11 Проведение испытания

11.1 В колбу Кьельдаля вместимостью 300 см помещают порцию анализируемого материала в соответствии с таблицей 1. Можно пользоваться любым методом переноса образца для испытания, соблюдая осторожность во избежание попадания образца на горлышко колбы (см. примечание). Добавляют серную кислоту (3 см для фотометрической методики или 10 см - для гравиметрической), а также помещают стеклянную бусинку диаметром 6 мм (см. примечание 1 к 11.4); колбу вращают круговыми движениями, чтобы перемешать ее содержимое.

Примечание - На практике объем, занимаемый стеклянным шариком (0,1 см), можно не принимать во внимание. При кипячении некоторых органических фосфорных соединений время от времени возникает чрезмерное вскипание. Это пульсирующее кипение можно свести к минимуму с помощью стеклянной бусинки. При использовании товарных средств регулирования процесса кипения могут возникнуть трудности вследствие их истирания в условиях энергичного кипячения, что приводит к загрязнению испытуемого образца и мешает получить чистый раствор для фотометрического измерения (см. разделы 12-18) даже после центрифугирования.


Таблица 1 - Количество образца

Метод определения

Массовая доля фосфора, %

Приблизительная масса образца, г

Точность взвешивания, г

Фотометрический
(молибденодиванадиевый)

0,002-0,2

2,0

±0,004


0,2-2,0

0,2

±0,0004

Гравиметрический

2-5

2,0

±0,004


5-10

1,0

±0,003


10-15

0,7

±0,002


15-25

0,4

±0,001



11.2 При наличии небольших количеств фосфора для получения удовлетворительной точности при проведении испытания необходимо соблюдать меры предосторожности. Следует тщательно соблюдать и обычные меры предосторожности, связанные с чистотой, безопасной работой и предупреждением загрязнений; перед применением вся лабораторная посуда должна быть обработана очищающей кислотой или по методике, в которой не используют товарные моющие средства. Эти соединения часто содержат щелочные фосфаты, которые сильно абсорбируются стеклянными поверхностями и не удаляются обычным ополаскиванием. Желательно выделить специальный запас лабораторной посуды только для определения фосфора.

11.3 Проводят холостой опыт по той же самой методике и с использованием тех же самых количеств всех реагентов и аналогичного количества образца белого масла. Этот холостой опыт используют в фотометрическом методе (см. разделы 12-18).

11.4 Колбу помещают на подставку в вытяжном шкафу и аккуратно нагревают микрогрелкой до обугливания образца, охлаждая горлышко колбы, применяя предпочтительно поток воздуха (см. примечание 1). Нагревание продолжают до появления белых паров (см. примечание 2). Во время кипячения непрерывно добавляют по каплям 1 см азотной кислоты (см. примечание 3) для окисления органического материала. После повторного появления белых паров обработку повторяют, используя дополнительно 1 см азотной кислоты (см. примечание 4). Продолжают добавлять азотную кислоту порциями по 1 см до тех пор, пока кипящая смесь не станет темнее соломенного цвета, что указывает на почти полное окисление органического вещества.

Примечания

1 Количество воздуха, используемого для охлаждения горлышка колбы, периодически необходимо уменьшать или даже прекращать его подачу, чтобы пары и дым улетучились из колбы, а образец упарился до появления густого белого дыма. Однако до тех пор, пока образец не будет полностью разложен, этого делать не следует; поток воздуха следует включать снова каждый раз перед добавлением азотной кислоты или перекиси водорода (см. 11.4).

2 Для сведения к минимуму любых потерь фосфора, которые могут произойти, следует избегать чрезмерного выпаривания серной кислоты. Следует быть аккуратным, чтобы избежать нагревания выше уровня жидкости. Как показывает практика, для испытуемых образцов, содержащих неорганические соединения (например, соли бария и свинца), наблюдаются потери фосфора, так как в присутствии указанных соединений происходит спекание или сплавление фосфата и сульфата со стеклом реакционной колбы. Этот факт подтверждается визуальным обнаружением непрозрачной пленки на стенках сухой колбы после проведения анализа.

3 Если азотную кислоту добавляют не по каплям, это может привести к образованию и выделению из колбы избыточного количества пара и потерям фосфора, содержащегося в нем.

4 Чтобы свести к минимуму потери серной кислоты в процессе выпаривания, целесообразно не продлевать стадию образования густого белого дыма между добавлением порций азотной кислоты.

11.5 Слегка охлаждают колбу и добавляют 10 капель (0,5 см) перекиси водорода. Нагревают колбу до появления густых белых паров и во время кипения осторожно по каплям добавляют 1 см азотной кислоты. После выпаривания азотной кислоты и повторного появления густых белых паров повторяют обработку, используя перекись водорода и азотную кислоту до тех пор, пока выпариваемая смесь не станет бесцветной, то есть органическая составляющая полностью окислится. Обычно достаточно четырех обработок. Израсходованное общее количество перекиси водорода следует зафиксировать и использовать такое же количество для каждого испытуемого образца и холостого опыта.

11.6 По завершении окисления колбу охлаждают, промывают входное отверстие и горлышко минимальным количеством воды (5 см) и перемешивают содержимое. Колбу возвращают на подставку и продолжают нагревание до появления густых белых паров. Для удаления перекиси водорода повторяют несколько раз процесс добавления воды и нагревания до густых паров.

(Предупреждение. Необходимо соблюдать осторожность при нагревании в соответствии с 11.5 для удаления всех следов перекиси водорода, чтобы избежать цветовых помех при фотометрическом определении фосфора, как описано в разделах 12-18).  

     ФОТОМЕТРИЧЕСКИЙ (МОЛИБДЕНОДИВАНАДИЕВЫЙ) МЕТОД

     12 Назначение

12.1 Определение общей массовой доли фосфора менее 2% (см. примечание), рассчитанной на основе исходного количества испытуемого образца, окисленного кислотой, как указано в разделах 7-11.

Примечание - Если массовая доля фосфора равна или более 2%, см. разделы 19-25.

     13 Сущность метода

13.1 После окисления органической составляющей в испытуемом образце и количественного превращения фосфора в фосфат-ион регулируют кислотность выпариваемой смеси и доводят объем смеси до соответствующего объема. Растворы ванадата аммония и молибдата аммония добавляют в указанном порядке. Добавление раствора молибдата к кислой смеси ванадат-фосфата приводит к образованию гетерополикислоты, молибденодиванадофосфорной кислоты, желтого цвета. Хотя точный состав молибденодиванадофосфорной кислоты не определен, было выявлено, что растворы этого соединения, образованные при точном соблюдении определенных условий, как функции содержания фосфора, соответствуют закону Ламберта-Бера для измерений оптического коэффициента пропускания в области 420-470 нм.

     14 Аппаратура

14.1 Фотоэлектрический фотометр - спектрофотометр, обеспечивающий пропускание в области 430-460 нм с выделением спектральной полосы 5 нм. Прибор должен быть снабжен в достаточном количестве вспомогательным оборудованием для работы с кюветами размером 1; 2 и 5 см. Также можно использовать другие приборы, такие как фотоколориметры.