МУ 2.1.4.1060-01
МЕТОДИЧЕСКИЕ УКАЗАНИЯ
2.1.4. ПИТЬЕВАЯ ВОДА И ВОДОСНАБЖЕНИЕ НАСЕЛЕННЫХ МЕСТ
Санитарно-эпидемиологический надзор за использованием синтетических полиэлектролитов в практике питьевого водоснабжения
Дата введения: с момента утверждения
1. РАЗРАБОТАНЫ авторским коллективом в составе: д.м.н., профессор М.В.Богданов, д.м.н., профессор А.А.Королев (Московская медицинская академия им. И.М.Сеченова); д.м.н., профессор З.И.Жолдакова (НИИ экологии человека и гигиены окружающей среды им. А.Н.Сысина РАМН); А.И.Роговец (Департамент ГСЭН Минздрава России); Н.И.Садова (МГП "Мосводоканал").
2. Использованы материалы и предложения: к.м.н., ст.н.сотр. Б.Р.Витвицкой (Московская медицинская академия им. И.М. Сеченова); к.м.н., в.н.с. В.Г.Смирнова (Институт токсикологии Минздрава России); д.х.н., профессора А.Т.Лебедева (МГУ); к.х.н. Л.Ф.Кирьяновой, Е.Н.Тульской (НИИ экологии человека и гигиены окружающей среды им. А.Н.Сысина РАМН).
3. УТВЕРЖДЕНЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ Главным государственным санитарным врачом Российской Федерации - Первым заместителем Министра здравоохранения Российской Федерации Г.Г.Онищенко 18 июля 2001 г.
4. ВВЕДЕНЫ ВПЕРВЫЕ.
1.1. Настоящие методические указания устанавливают гигиенические требования к организации и осуществлению контроля использования синтетических полиэлектролитов в практике питьевого водоснабжения.
1.2. Методические указания предназначены для предприятий, организаций и иных хозяйственных субъектов (независимо от подчиненности и форм собственности), деятельность которых связана с применением синтетических полиэлектролитов в практике очистки питьевой воды, органов и учреждений санитарно-эпидемиологической службы, осуществляющих государственный санитарно-эпидемиологический и ведомственный надзор за качеством подготовки питьевой воды.
2.2. Закон Российской Федерации "Об охране окружающей среды" N 96-ФЗ от 19.12.91 г.
2.3. Водный кодекс Российской Федерации N 167-ФЗ от 16.11.95 г.
2.4. Закон Российской Федерации "О лицензировании отдельных видов деятельности" N 158-ФЗ от 25.09.98 г.
2.6. Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества. СанПиН 2.1.4.559-96. - М., 1996.
2.7. Порядок разработки, экспертизы, утверждения, издания и распространения нормативных и методических документов системы государственного санитарно-эпидемиологического нормирования: Сборник. Р 1.1.001-1.1.005-96.
3.1. Синтетические полиэлектролиты широко применяются в технологиях очистки питьевой воды. Методы физико-химической очистки, основанные на использовании синтетических полиэлектролитов, не имеют альтернативы с технологических и гигиенических позиций благодаря высокой эффективности, относительной простоте, универсальности и надежности.
3.2. К синтетическим полиэлектролитам относятся высокомолекулярные полимерные соединения, растворимые и диссоциирующие в воде на ионы. При диссоциации молекулы полиэлектролита образуется один сложный высокомолекулярный поливалентный ион и большое количество простых ионов с низкой валентностью. По знаку заряда высокомолекулярного иона различают анионные, катионные и амфотерные (анионно-катионные) полиэлектролиты.
3.3. По назначению синтетические полиэлектролиты разделяются на коагулянты и флокулянты. Коагулянты - это полиэлектролиты, приводящие к агрегации взвешенных частиц за счет нейтрализации заряда и химического связывания. В результате применения коагулянтов происходит дестабилизация коллоидной суспензии и образование микрохлопьев. К флокулянтам относятся полиэлектролиты, способствующие образованию агрегатов за счет объединения нескольких частиц через макромолекулы адсорбированного или химически связанного полимера. Большая молекулярная масса флокулянтов способствует образованию мостиков между микрохлопьями и формированию макрохлопьев.
3.4. Полимерные коагулянты и флокулянты применяются для очистки природных вод от взвешенных и коллоидно-дисперсных веществ. При этом одновременно снижаются: цветность, запахи, привкусы и микробная загрязненность воды.
3.5. Эффективность очистки воды синтетическими электролитами зависит от ряда факторов: природы и количества добавляемого полимера, его молекулярной массы и заряда, условий введения реагента, концентрации взвешенных веществ и их физико-химических характеристик, рН, температуры, электропроводности воды и др.
3.5.1. Природа полимера. Наиболее эффективны синтетические полиэлектролиты с высокой степенью полимеризации и большой молекулярной массой. Большей эффективностью обладают полиэлектролиты с вытянутой молекулой (линейные полимеры).
3.5.2. Доза полимера. Коагулирующее или флокулирующее действие реагента проявляется при определенном соотношении между его концентрацией и содержанием взвешенных твердых частиц. Обычно область эффективной стабилизации и флокуляции дисперсий соответствует содержанию полимера в количестве 0,4-2% от веса твердой фазы (оптимальная доза). Большая доза высокомолекулярного полимера препятствует агрегации, повышая устойчивость суспензий.
3.5.3. Молекулярная масса. Флокулирующая способность неионных полимеров и одноименно заряженных полиэлектролитов, как правило, возрастает с увеличением степени их полимеризации, что приводит к уменьшению оптимальной дозы реагента. Для синтетических катионных коагулянтов, заряженных противоположно взвешенным частицам, молекулярная масса играет меньшую роль и эффективность их действия, в первую очередь, зависит от величины заряда.
3.5.4. Концентрация дисперсной фазы, размер и природа частиц. В разбавленных растворах между концентрацией твердой фазы и количеством полимера, вызывающим максимальную коагуляцию/флокуляцию, существует прямо пропорциональная зависимость. Частицы, имеющие размер менее 50 , флокулируются наиболее эффективно. Для агрегации взвешенных веществ органического происхождения требуются катионные реагенты, а для неорганических взвесей - анионные.
3.5.5. рН и температура воды. Гидролиз и ионный заряд полимера напрямую зависят от рН и температуры. Анионные реагенты более эффективны в щелочной среде, а неионные и умеренно катионные полимеры - в кислой среде. При низкой температуре воды процесс агрегации частиц с помощью синтетических полиэлектролитов ухудшается.
3.6. Синтетические органические высокомолекулярные коагулянты могут применяться совместно с неорганическими коагулянтами (соли алюминия и железа) или, что характерно для современных технологий очистки воды, в качестве самостоятельных, основных реагентов. По сравнению с неорганическими коагулянтами полимерные коагулянты обладают следующими преимуществами:
- обеспечивают агрегацию частиц при значительно меньших дозах реагента;
- эффективны в широком диапазоне рН очищаемой воды;
- увеличивают скорость разделения жидкой и твердой фаз;
- не изменяют рН очищенной воды;
- минимизируют объем легко обезвоживаемого осадка;
- не добавляют в очищаемую воду ионов металлов;
- более эффективны для устранения вирусов, цист простейших и одноклеточных водорослей.
3.7. Синтетические органические высокомолекулярные флокулянты применяются для увеличения эффекта очистки воды после ее коагуляции неорганическими или органическими коагулянтами. Флокулянты позволяют:
- увеличить скорость захвата взвешенных частиц;
- ускорить процесс образования макрохлопьев и увеличить их плотность;
- уменьшить оптимальную дозу коагулянта;
- увеличить производительность, эффективность и срок службы фильтров для очистки воды;
- минимизировать расходы и трудоемкость, связанные с удалением осадков.
3.8. Синтетические полиэлектролиты являются малотоксичными соединениями, но, как правило, содержат мономеры и примеси, нередко представляющие огромный риск для здоровья населения. В то же время, ПДК в воде для подавляющего большинства полиэлектролитов установлены по общесанитарному показателю вредности. Применительно к оценке качества питьевой воды они имеют второстепенное значение, т.к. пороговые уровни по органолептическому и МНК по токсикологическому признакам вредности на несколько порядков выше, чем остаточные количества синтетических полиэлектролитов в очищенной воде. Кроме того:
- большинство реагентов применяется в дозах, сопоставимых с гигиеническими нормативами;
- при использовании в процессах осветления воды реагентов в оптимальных дозах остаточные концентрации их заведомо ниже ПДК;
- в настоящее время отсутствуют доступные аналитические методы, позволяющие достоверно определять содержание полимеров и мономеров на уровнях, реально присутствующих в воде после применения синтетических полиэлектролитов в оптимальных дозах;
- контроль качества питьевой воды, прошедшей очистку с использованием синтетических полиэлектролитов, до настоящего времени проводится в нашей стране по остаточным концентрациям полимеров, без учета содержания мономеров и других опасных примесей.
3.9. Реальная минимизация риска для здоровья населения, связанного с применением для очистки воды синтетических полиэлектролитов, может быть достигнута при следующих условиях:
- контроль качества при производстве синтетических полиэлектролитов (оценка и регламентирование сырьевых компонентов; стабилизация условий синтеза; контроль примесей, побочных и промежуточных продуктов);
- расчет допустимого содержания мономеров и токсичных примесей в полимерном продукте с учетом их ПДК и референтных доз;
- обоснование максимально допустимой дозы реагентов, обеспечивающей безопасное их использование в технологиях очистки воды.
4.1. В практике очистки питьевой воды используются реагенты, подавляющее большинство которых относится к следующим четырем группам соединений:
- полиамины (полиэпихлоргидриндиметиламины, полиЭПИ-ДМА);
- полидиаллилдиметиламмоний хлориды (полиДАДМАХи);
- полиакриламиды (ПАА);
- смеси (сополимеры).
4.2. Полиамины и полиДАДМАХи характеризуются очень высоким катионным зарядом при относительно невысокой молекулярной массе, что определяет их использование в качестве коагулянтов при очистке питьевой воды. Полиакриламиды представлены в неионной, анионной и катионной форме, имеют молекулярную массу от 1 до 20 млн. и применяются в качестве флокулянтов.
4.3. Полиамины (полиЭПИ-ДМА)
4.3.1. Полимеры на основе эпихлоргидриндиметиламина производятся путем реакции конденсации первичных или вторичных аминов с эпихлоргидрином:
4.3.2. Эмпирическая формула (, где и - переменные, определяемые используемыми реагентами и их молярным соотношением. Регистрационные номера CAS 25988-97-0; 68583-79-1; 42751-79-1.
4.3.3. Реагент представляет собой водный раствор в форме вязкой жидкости, с содержанием активного вещества от 30 до 50%. Продукт смешивается с водой при любых концентрациях (пропорциях).
4.3.4. Молекулярная масса от 10 тыс. до 1 млн. Катионный заряд расположен на главной цепи. Вязкость 50%-ного раствора от 40 до 20000 сПз.
4.3.5. В товарном продукте обнаруживаются вещества, которые используются при синтезе полимера или появляются в результате гидролиза. Важнейшими из них являются эпихлоргидрин, глицидол, 1,3-дихлорпропанол, 2,3-дихлорпропанол и диметиламин.
4.4. Полидиаллилдиметиламмоний хлорид (полиДАДМАХ)
4.4.1. Реагент полиДАДМАХ синтезируется из аллилхлорида и диметиламина:
Полимеризация происходит циклическим путем с образованием следующей структуры:
4.4.2. Эмпирическая формула: --. Регистрационный номер CAS 26062-79-3.
4.4.3. Реагент может быть представлен в виде порошка или в жидкой форме с концентрацией активного вещества от 10 до 40 масс. %.
4.4.4. Молекулярная масса от 10 тыс. до 1 млн. Катионный заряд расположен на вторичной цепи. Вязкость 40%-ного раствора от 40 до 20000 сПз.
4.4.5. В товарном продукте присутствует мономер ДАДМАХ.
4.5. Полиакриламиды (ПАА)
4.5.1. Неионные ПАА. Представляют собой акриламидные гомополимеры, получаемые путем полимеризации мономера акриламида:
4.5.1.1. Эмпирическая формула: --, где: - переменная в зависимости от продукта. Регистрационные номера CAS 25085-02-3; 9003-05-8; 9003-04-7.