РУКОВОДСТВО
ПО ПРИМЕНЕНИЮ ТЕПЛОВЫХ НАСОСОВ С ИСПОЛЬЗОВАНИЕМ ВТОРИЧНЫХ
ЭНЕРГЕТИЧЕСКИХ РЕСУРСОВ И НЕТРАДИЦИОННЫХ ВОЗОБНОВЛЯЕМЫХ
ИСТОЧНИКОВ ЭНЕРГИИ
РАЗРАБОТАНО ОАО "ИНСОЛАР-ИНВЕСТ" (Васильев Г.П., к.т.н., Председатель Совета директоров, руководитель темы; Хрустачев Л.В., зам. генерального директора; Розин А.Г., ведущий специалист; Абуев И.М., ст. научный сотрудник; Горнов В.Ф., инженер; Орлов В.О., д.т.н., ст. научный сотрудник; Воробьев Н.В., к. ф-м. н., научный сотрудник)
ПОДГОТОВЛЕНО к утверждению и изданию Управлением перспективного проектирования и нормативов Москомархитектуры (инж. Ионин В.А., Щипанов Ю.Б.)
УТВЕРЖДЕНО И ВВЕДЕНО В ДЕЙСТВИЕ указанием Москомархитектуры от 31.01.2001 г. N 8.
Рациональное использование топливно-энергетических ресурсов представляет собой одну из актуальных проблем. Одним из перспективных путей решения этой проблемы является применение новых энергосберегающих технологий и оборудования, использующих нетрадиционные источники энергии.
В качестве приоритетного направления более широкого использования нетрадиционных источников энергии наибольший интерес представляет область тепло-хладоснабжения, являющаяся сегодня одним из наиболее емких мировых потребителей топливно-энергетических ресурсов. Преимущества технологий тепло-хладоснабжения, использующих нетрадиционные источники энергии, в сравнении с их традиционными аналогами связаны не только со значительными сокращениями затрат энергии в системах жизнеобеспечения зданий и сооружений, но и с их экологической чистотой, а также новыми возможностями в области повышения степени автономности систем теплоснабжения. Представляется, что именно эти качества будут иметь определяющее значение в формировании конкурентной ситуации на рынке тепло-хладогенерирующего оборудования как в нашей стране, так и за рубежом.
Тепло-хладоснабжение с помощью тепловых насосов относится к области энергосберегающих экологически чистых технологий и получает все большее распространение в мире. Эта технология по заключению целого ряда авторитетных международных организаций, наряду с другими энергосберегающими технологиями (использование солнечной, ветровой энергии, энергии Океана и т.п.), относится к технологиям XXI века.
В общем случае тепловой насос - это устройство, используемое для обогрева и охлаждения. Он работает по принципу передачи тепловой энергии от холодной среды к более теплой, в то время как естественным путем тепло перетекает из теплой области в холодную (см. Рис.1).
Рис.1. Принципиальная схема работы компрессионного теплового насоса
Таким образом, тепловой насос заставляет двигаться тепло в обратном направлении. Например, при обогреве дома тепло забирается из более холодного внешнего источника и передается в дом. Для охлаждения (кондиционирования) дома тепло забирается из более теплого воздуха в доме и передается наружу. Тепловой насос в чем-то подобен обычному гидравлическому насосу, который перекачивает жидкость с нижнего уровня на верхний, тогда как в естественных условиях жидкость перетекает с верхнего уровня на нижний.
В основу принципа действия наиболее распространенных парокомпрессионных тепловых насосов положены два физических явления:
- поглощение и выделение тепла веществом при изменении агрегатного состояния - испарении и конденсации соответственно;
- изменение температуры испарения (и конденсации) при изменении давления.
Соответственно, основные элементы парокомпрессионного контура - теплообменник-испаритель, теплообменник-конденсатор, компрессор и дроссель. В испарителе рабочее тело, обычно хладон, находится под низким давлением и кипит при низкой температуре, поглощая теплоту низкопотенциального источника. Затем рабочее тело сжимается в компрессоре, приводимом в действие электрическим или иным двигателем, и поступает в конденсатор, где при высоком давлении конденсируется при более высокой температуре, отдавая теплоту испарения приемнику тепла, например, теплоносителю системы отопления. Из конденсатора рабочее тело через дроссель вновь поступает в испаритель, где его давление снижается и снова начинается процесс кипения.
Тепловой насос может забирать тепло из нескольких источников, например, воздуха, воды или земли. И таким же образом он может сбрасывать тепло в воздух, воду или землю. Более теплая среда, воспринимающая тепло, называется теплоприемником. В зависимости от типа источника и приемника тепла испаритель и конденсатор могут выполняться как теплообменники типа "воздух-жидкость", так и "жидкость-жидкость".
Регулирование работы систем теплоснабжения с применением теплового насоса в большинстве случаев производится его включением и выключением по сигналам датчика температуры, установленного в приемнике (при нагреве) или источнике (при охлаждении) тепла. Настройка теплового насоса обычно производится изменением сечения дросселя (терморегулирующего вентиля - ТРВ).
В зависимости от сочетания вида источника низкопотенциальной теплоты и нагреваемой среды тепловые насосы делятся на следующие типы:
- воздух - воздух;
- воздух - вода;
- грунт - воздух;
- грунт - вода;
- вода - воздух;
- вода - вода.
Эти типы тепловых насосов отличаются конструктивным исполнением теплообменной части (испарителя и конденсатора) и температурными режимами реализуемых термодинамических циклов.
Настоящее Руководство разработано ОАО "ИНСОЛАР-ИНВЕСТ" в развитие СНиП 2.04.05-91* "Отопление, вентиляция и кондиционирование" и МГСН 2.01-99 "Энергосбережение в зданиях" и освещает вопросы применения теплонасосных систем теплохладоснабжения (ТСТ), использующих вторичные энергетические ресурсы (ВЭР) и нетрадиционные возобновляемые источники энергии (НВИЭ).
Руководство имеет своей целью оказание помощи заказчикам и проектировщикам в выборе рациональных энергосберегающих технических решений систем тепло-хладоснабжения, предусматривающих применение тепловых насосов, и предназначено для использования при проектировании новых и реконструкции существующих объектов.
При разработке Руководства использован опыт применения тепловых насосов в зарубежной и отечественной практике, в частности опыт работы предприятий группы "ИНСОЛАР" по внедрению в России теплонасосных систем тепло-хладоснабжения в различных областях гражданского и промышленного строительства, включая результаты научно-исследовательских работ, выполненных ОАО "ИНСОЛАР-ИНВЕСТ" в рамках Государственной научно-технической программы России "Экологически чистая энергетика".
1.1. При проектировании систем тепло-хладоснабжения (отопления, вентиляции, кондиционирования воздуха, горячего водоснабжения) зданий и сооружений с использованием тепловых насосов и тепловых узлов к ним следует руководствоваться следующими нормативными документами:
- СНиП 2.04.05-91* "Отопление, вентиляция и кондиционирование воздуха";
- СНиП 2.04.01-85* "Водоснабжение и канализация";
- СНиП 2.04.07-86* "Тепловые сети";
- МГСН 2.01-99 "Энергосбережение в зданиях. Нормативы по теплозащите и тепловодоэлектроснабжению";
- СП 41-101-95 Свод правил "Проектирование тепловых пунктов",
а также другими нормативными документами федерального и регионального (московского) уровня, касающимися энергосбережения при проектировании объектов индивидуального и общественного жилищного строительства, объектов коммунального и промышленного строительства.
1.2. Термодинамически тепловой насос представляет собой обращенную холодильную машину и, по аналогии, содержит испаритель, конденсатор и контур, осуществляющий термодинамический цикл. Основные типы термодинамических циклов - абсорбционный и, наиболее распространенный, парокомпрессионный. Если в холодильной машине основной целью является производство холода путем отбора теплоты из какого-либо объема испарителем, а конденсатор осуществляет сброс теплоты в окружающую среду, то в тепловом насосе картина обратная. Конденсатор является теплообменным аппаратом, выделяющим теплоту для потребителя, а испаритель - теплообменным аппаратом, утилизирующим низкопотенциальную теплоту: вторичные энергетические ресурсы и (или) нетрадиционные возобновляемые источники энергии. Термодинамический цикл теплового насоса в T-S диаграмме представлен на рисунке 2.
Рис.2. Термодинамический цикл теплового насоса в T-S диаграмме
1.3. Как и холодильная машина, тепловой насос потребляет энергию на реализацию термодинамического цикла (привод компрессора). Коэффициент преобразования теплового насоса - отношение теплопроизводительности к электропотреблению - зависит от уровня температур в испарителе и конденсаторе и колеблется в различных системах в диапазоне от 2,5 до 5, т.е. на 1 кВт затраченной электрической энергии тепловой насос производит от 2,5 до 5 кВт тепловой энергии. Температурный уровень теплоснабжения от тепловых насосов 35-55 °С. Экономия энергетических ресурсов достигает 70%.
Промышленность технически развитых стран выпускает широкий ассортимент парокомпрессионных тепловых насосов тепловой мощностью от 5 до 1000 кВт.
На рисунке 3 представлены зависимости идеального и действительного (реального) коэффициента преобразования ТН от температур испарения и конденсации хладагента.
Рис.3. Зависимость идеального и действительного (реального) коэффициента преобразования ТН от температур испарения и конденсации хладагента
1.4. Энергетический баланс ТН записывается следующим образом:
, где
- теплота, отводимая от конденсатора;
- теплота, подводимая к испарителю;
- работа компрессора.
1.5. Коэффициент преобразования ТН определяется по формуле:
, где
- температура конденсации рабочего тела;
- температура испарения рабочего тела;
- суммарный коэффициент потерь ТН (потери цикла, потери в компрессоре, потери от необратимости при теплопередаче и т.п.).
Идеальный коэффициент преобразования ТН:
.
1.6. Системы теплоснабжения с использованием тепловых насосов - теплонасосные системы теплоснабжения - могут быть применены для отопления, подогрева вентиляционного воздуха, нагрева воды для горячего водоснабжения и т.п.
В качестве низкопотенциальных (низкотемпературных) источников теплоты могут использоваться:
а) вторичные энергетические ресурсы:
- теплота вентиляционных выбросов;
- теплота серых канализационных стоков;
- сбросная теплота технологических процессов и т.п.
б) нетрадиционные возобновляемые источники энергии:
- теплота окружающего воздуха;
- теплота грунтовых и геотермальных вод;
- теплота водоемов и природных водных потоков;
- теплота солнечной энергии и т.п.;
- теплота поверхностных и более глубоких слоев грунта.
Следует учесть, что использование тепловых насосов для тепло-хпадоснабжения с использованием ВЭР и НВИЭ представляет собой новую современную технологию и требует современных архитектурно-планировочных, конструктивных и инженерно-технологических решений по всему объекту в целом. ТСТ должна быть органично вписана в объект и рационально сопряжена с остальными инженерными системами объекта.
2.1. Теплота окружающего воздуха
Теплота окружающего воздуха, как источника низкопотенциальной теплоты, характеризуется, как правило, сезонными и краткосрочными колебаниями температуры в зависимости от погодных условий, что влечет за собой колебания режимов работы теплового насоса, снижающие его эффективность. Кроме того, средний уровень температуры окружающего воздуха влияет на коэффициент трансформации: чем ниже температура, тем ниже коэффициент трансформации.
В этой связи теплоту окружающего воздуха целесообразно использовать в климатических зонах с достаточно высокой (не ниже +5 °С) температурой и со стабильными погодными условиями.
Для климатической зоны г.Москвы с колебаниями температуры воздуха в отопительный период от 0 °С до -30 °С, что определяется высокой циклонической деятельностью в этот период, применение этого низкопотенциального источника не целесообразно.
2.2. Теплота грунтовых и подземных вод
Грунтовые и подземные воды обладают достаточно высокой теплоотдачей и имеют постоянную температуру, что обеспечивает эффективность и стабильность режимов работы тепловых насосов. Для утилизации теплоты создается циркуляционный контур: вода из грунта подается в теплообменник, связанный с испарителем теплового насоса, охлаждается и закачивается обратно в грунт (см. Рис.4). Однако использование этих источников связано с более интенсивным вмешательством в гидрологический режим недр и требует согласования с соответствующими службами.
Рис.4. Теплонасосная система теплоснабжения, использующая тепло подземных вод