Статус документа
Статус документа

ГОСТ Р ИСО 5479-2002 Статистические методы. Проверка отклонения распределения вероятностей от нормального распределения (Переиздание)

     5 Графический метод

5.1 Кумулятивную функцию распределения наблюденных значений строят на бумаге для нормальных вероятностных графиков. Вертикальная ось имеет нелинейную шкалу, соответствующую площади под стандартной функцией нормального распределения, и размечена значениями кумулятивной относительной частоты. Другая ось имеет линейную шкалу для упорядоченных значений . Если кумулятивная функция распределения переменной приближается к прямой линии, то распределение переменной будет нормальным.

Иногда эти оси меняют местами. Если выполнено нормирование переменной , линейную шкалу можно заменить логарифмической, квадратичной, обратной или другой шкалой.

На рисунке 1 приведен пример бумаги для нормальных вероятностных графиков. По вертикальной оси значения кумулятивной относительной частоты даны в процентах, а по горизонтальной - произвольная линейная шкала.

Чистый бланк бумаги для нормальных вероятностных графиков приведен в приложении А.


Рисунок 1 - Бумага для нормальных вероятностных графиков


     Если график на этой бумаге представлен набором точек, которые рассеянны около прямой линии, то это дает первое подтверждение утверждению, что генеральная совокупность, из которой взята выборка, подчиняется нормальному закону распределения.

     Этот подход важен тем, что дает наглядную информацию по типу отклонения от нормального распределения.

Если график показывает, что данные подчинены другому распределению, не имеющему отношения к нормальному (например, график кумулятивной функции распределения такой, как на рисунке 5 или 6), то в некоторых случаях к нормальному распределению можно перейти с помощью специального преобразования.

Если график показывает, что данные не подчиняются простому однородному распределению, а, скорее всего, принадлежат смеси двух или нескольких однородных подсовокупностей (например, если график кумулятивной функции распределения такой, как на рисунке 7), то рекомендуется выявить подсовокупности и анализ каждой из них проводить отдельно.

Этот графический метод не является критерием на отклонение от нормального распределения в строгом смысле. Например, в случае малых выборок с его помощью можно получить выраженные кривые нормальных распределений, но для больших выборок кривые могут представлять ненормальные распределения.

5.2 Графическая процедура состоит в расположении наблюденных значений () в неубывающем порядке и затем в нанесении значений вероятности , рассчитанных по формуле

,                                          (1)


на бумагу для нормальных вероятностных графиков (где - порядковый номер ; ).

Примечание 1 - Часто вместо формулы (1) применяют следующие формулы: и . Применение данных формул не рекомендуется, так как они дают плохую аппроксимацию нормальной функции распределения ожидаемой порядковой статистики .

5.3 Пример использования бумаги для нормальных вероятностных графиков показан на рисунке 2.


Рисунок 2 - График серии наблюдений на бумаге для нормальных вероятностных графиков

В таблице 1 приведены значения в порядке неубывания как результат серии из 15 независимых наблюдений при испытаниях на усталость вращающегося соединения.


Таблица 1 - Значения серии из 15 независимых наблюдений и соответствующие им значения



1

0,041

0,200

0,301

2

0,107

0,330

0,519

3

0,172

0,445

0,648

4

0,238

0,490

0,690

5

0,303

0,780

0,892

6

0,369

0,920

0,964

7

0,343

0,950

0,978

8

0,500

0,970

0,987

9

0,566

1,040

1,017

10

0,631

1,710

1,233

11

0,697

2,220

1,346

12

0,762

2,275

1,357

13

0,828

3,650

1,562

14

0,893

7,000

1,845

15

0,959

8,800

1,944

               

Примечание 2 - В таблице 1 и последующих примерах единицы величин опущены, так как это несущественно для рассматриваемых критериев в данном стандарте.


Серию точек, показанную на рисунке 2а), получают на основе значений вероятностей и . Из графика видно, что эти точки не образуют прямой линии. Если заменить на , то новый график на рисунке 2b) близок к прямой линии. Из этого следует, что гипотеза нормального распределения для логарифма наблюдений адекватна.