ГОСТ Р МЭК 61094-2-2001
Группа Т88.9
ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
Государственная система обеспечения единства измерений
МИКРОФОНЫ ИЗМЕРИТЕЛЬНЫЕ
Первичный метод градуировки по давлению лабораторных эталонных микрофонов методом взаимности
State system for ensuring the uniformity of measurements. Measurement microphones. Primary method
for pressure calibration of laboratory standard microphones by the reciprocity technique
ОКС 17.020
33.160.50
ОКСТУ 0008
Дата введения 2002-07-01
Предисловие
1 РАЗРАБОТАН Всероссийским научно-исследовательским институтом физико-технических и радиотехнических измерений (ВНИИФТРИ), Техническим комитетом по стандартизации ТК 206 "Эталоны и поверочные схемы"
ВНЕСЕН Управлением метрологии Госстандарта России
2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 1 августа 2001 года N 311-ст
3 Настоящий стандарт представляет собой аутентичный текст международного стандарта МЭК 61094-2-95 "Микрофоны измерительные. Первичный метод градуировки по давлению лабораторных эталонных микрофонов методом взаимности"
4 ВВЕДЕН ВПЕРВЫЕ
1 Область применения
Настоящий стандарт:
- распространяется на лабораторные эталонные микрофоны (далее - микрофоны), удовлетворяющие требованиям МЭК 61094-1, и на другие конденсаторные микрофоны, имеющие такие же размеры;
- устанавливает первичный метод определения чувствительности микрофонов по давлению, позволяющий получить воспроизводимость и необходимую точность при измерении звукового давления.
Следующие нормативные документы содержат положения, на которые имеются ссылки в настоящем стандарте и которые входят в состав этого стандарта. Поскольку все нормативные документы периодически пересматриваются, рекомендуется применять последние издания нормативных документов, указанных ниже.
Перечни действующих международных стандартов имеются в соответствующих национальных организациях МЭК и ИСО.
МЭК 27-72* Обозначения в электротехнике. Часть 2: Телекоммуникация и электроника
МЭК 61094-1-95* Микрофоны измерительные. Часть 1: Микрофоны лабораторные эталонные. Технические требования
________________
* Стандарты МЭК - во ВНИИКИ Госстандарта России.
Определения - по МЭК 27 и МЭК 61094-1 и дополнительные термины со следующими определениями:
обратимый микрофон: Линейный пассивный микрофон, для которого импеданс холостого хода в обратном направлении и передаточный импеданс в прямом направлении равны по значению.
фазовая чувствительность микрофона по давлению: Фазовый угол на данной частоте между напряжением холостого хода и равномерно распределенным звуковым давлением, действующим на мембрану, градус или радиан ( ... ° или рад).
электрический передаточный импеданс: Для системы, состоящей из двух акустически связанных микрофонов, - это отношение напряжения холостого хода микрофона-приемника к входному току микрофона-излучателя, ом (Ом).
Примечание - Этот импеданс определяют для конструкции с заземленным экраном, приведенной в 7.2 МЭК 61094-1.
акустический передаточный импеданс: Для системы, состоящей из двух акустически связанных микрофонов, - это отношение звукового давления, действующего на мембрану микрофона-приемника, к объемной скорости, производимой микрофоном-излучателем, в режиме короткого замыкания (т.е. при ненагруженной мембране), паскаль-секунда на кубический метр (Па·с/м).
камера связи: Устройство, в котором при установленных микрофонах образуется полость определенной формы и размеров и которое служит как элемент акустической связи между микрофонами.
Температура | =23,0 °С. |
Статическое давление | =101325 Па. |
Относительная влажность | =50%. |
Примечание - Опорное значение температуры 23,0 °С выбрано из практических соображений, требующих проведения градуировки преимущественно при данной или близкой по значению температуре.
5.1 Общие сведения
Градуировка микрофонов методом взаимности может быть выполнена либо с помощью трех микрофонов, два из которых должны быть обратимыми, либо с помощью вспомогательного источника звука и двух микрофонов, один из которых должен быть обратимым.
Примечание - Если один из микрофонов необратим, то он может быть использован только в качестве приемника звука.
5.1.1 Общие принципы градуировки при использовании трех микрофонов
Предполагают, что два микрофона акустически соединены с помощью камеры связи. Используя один из них в качестве источника звука, а другой - в качестве приемника, измеряют электрический передаточный импеданс. Если акустический передаточный импеданс такой системы известен, то можно найти произведение чувствительностей по давлению двух связанных микрофонов. Используя парные комбинации микрофонов (1), (2) и (3), получают три таких независимых произведения, из которых можно вывести уравнение для чувствительности по давлению каждого из трех микрофонов.
5.1.2 Общие принципы градуировки при использовании двух микрофонов и вспомогательного источника звука
Во-первых, предполагают, что два микрофона акустически соединены между собой с помощью камеры связи. Определяют произведение значений чувствительности по давлению этих микрофонов (5.1.1). Во-вторых, предполагают, что на оба микрофона воздействует одинаковое звуковое давление от вспомогательного источника звука. Тогда отношение двух выходных напряжений будет равно отношению чувствительностей по давлению этих микрофонов. Таким образом, из произведения и отношения чувствительностей по давлению этих двух микрофонов можно определить чувствительность по давлению каждого из двух микрофонов.
Примечание - Чтобы получить отношение чувствительностей по давлению, можно использовать метод непосредственного сравнения, а вспомогательным источником звука может быть третий микрофон, механические и акустические характеристики которого отличаются от характеристик градуируемых микрофонов.
5.2 Основные уравнения
Лабораторные эталонные и подобные им микрофоны можно рассматривать как обратимые, и поэтому систему из двух уравнений для этих микрофонов можно записать в виде
; (1)
,
где - звуковое давление, равномерно распределенное по мембране микрофона;
- напряжение на электрических контактах микрофона;
- объемная скорость акустической части (мембраны) микрофона;
- сила тока, протекающего через электрические контакты микрофона;
- электрический импеданс микрофона при заторможенной мембране;
- акустический импеданс микрофона при ненагруженных электрических контактах;
- передаточный импеданс в обратном и прямом направлениях; - чувствительность микрофона по давлению.
Уравнения (1) можно переписать в виде
; (1a)
,
которые и являются уравнениями взаимности для микрофона.
Предполагают, что микрофоны (1) и (2), имеющие чувствительности по давлению и , акустически соединены с помощью камеры связи. Из уравнений (1а) видно, что ток , протекающий через электрические контакты микрофона (1), вызовет объемную скорость при коротком замыкании (=0 на мембране) и создаст звуковое давление на акустическом входе микрофона (2), где является акустическим передаточным импедансом системы.
Напряжение холостого хода на микрофоне (2) при этом будет
.
Следовательно, произведение чувствительностей по давлению будет
. (2)
5.3 Метод замещения напряжения
Метод замещения напряжения применяют для определения напряжения холостого хода электрически нагруженного микрофона.
Предполагают, что к микрофону с определенным напряжением холостого хода и внутренним импедансом подключен импеданс нагрузки. Для измерения напряжения холостого хода к микрофону последовательно подключают малый (по сравнению с импедансом нагрузки) импеданс, через который подают с генератора калибровочное напряжение известного значения.
Предполагают, что звуковое давление и калибровочное напряжение той же частоты подают попеременно. Калибровочное напряжение регулируют до тех пор, пока оно не даст такое же падение напряжения на импедансе нагрузки, что и при воздействии звукового давления на микрофон. В этом случае напряжение холостого хода будет равно по значению калибровочному напряжению.
5.4 Определение акустического передаточного импеданса
Акустический передаточный импеданс можно определить из эквивалентной схемы рисунка 1, где и - акустические импедансы микрофонов (1) и (2) соответственно.
1 - камера связи
Рисунок 1 - Эквивалентная схема для определения акустического передаточного импеданса
Рисунок 2 - Эквивалентная схема для определения , когда размеры камеры связи малы по сравнению с длиной волны
В некоторых случаях можно определить теоретически. Предполагают, что звуковое давление будет одинаковым в любой точке внутри камеры связи (это будет соблюдено, если физические размеры камеры связи малы по сравнению с длиной волны). Только в этом случае газ, заключенный в камере связи, характеризуется как чистая гибкость, и из эквивалентной схемы рисунка 2 (в предположении адиабатического характера сжатия и расширения газа) выражается через :