3.1. Воздействие внешних факторов
3.1.1. Железобетонные конструкции резервуаров в зависимоети от их размещения на земле подвергаются воздействию внешних природных климатических факторов (температура, осадки, грунтовые воды).
3.1.2. Воздействию температуры и осадков подвергаются наружные поверхности железобетонных конструкций резервуаров. Воздействию грунтовых, в том числе агрессивных вод подвергаются железобетонные конструкции днищ всех видов резервуаров, а также наружные поверхности стен заглубленных и обвалованных резервуаров. Воздействию осадков через утеплитель - грунт могут подвергаться конструкции плит покрытия в случае недостаточной их гидроизоляции.
Интенсивность воздействия по градиентам температур, виду и содержанию коррозионно-активных к железобетону веществ определяется климатическим районом и нормируется по СНиП 2.03.01-84* [10] и СНиП 2.03.11-85 [11].
3.1.3. В бетоне и на арматуре железобетонных конструкций, не имеющих специальной (первичной и вторичной) защиты от коррозии при контакте с агрессивной средой промплощадки резервуаpa, развиваются процессы коррозии, снижающие долговечность материалов и сроки эксплуатации хранилищ.
3.1.4. В бетоне возможны три вида коррозии:
выщелачивание;
химическое растворение кислотами, солями кислот;
кристаллизационное разрушение.
3.1.5. Коррозия первого вида наблюдается в бетоне при обмывании и фильтрации талых вод с малой временной жесткостью, в результате чего происходит растворение и вынос из цементного камня гидроксида кальция Са(ОН), пассивирующего сталь и предотвращающего коррозию арматуры. Скорость коррозии бетона определяется скоростью обмена, фильтрации воды и количеством Са(ОН) в цементном камне (в расчете на СаО).
3.1.6. Прочность бетона в условиях коррозии выщелачивания можно определить по формуле: , где - исходная прочность, МПа; =1-1,5-exp(33)·10, =0,1 при =60% и =0,33 при =30% общего количества СаО в цем
енте.
3.1.7. Коррозии первого вида подвержены в основном железобетонные конструкции резервуаров, подтапливаемые талыми водами. Повышение стойкости обеспечивается методами первичной защиты (используют бетоны со структурой высокой плотности, изготовленные на клинкерных, безусадочных цементах с уплотняющими и расширяющимися добавками) или вторичной защиты (пропитка полимеризующими составами, гидроизоляция мастичными полимерными покрытиями) по СНиП 2.03.11-85 [11].
3.1.8. При коррозии второго вида в бетоне протекают обменные реакции между составляющими цементного камня и химически агрессивными веществами - кислотами, солями кислот. В результате таких реакций образуются легкорастворимые соли или аморфные малорастворимые соединения. Ни те, ни другие не обладают вяжущими и защитными свойствами для стальной арматуры.
3.1.9. Прогноз полного разрушения слоя бетона =0 на глубину в условиях второго вида коррозии вычисляется по зависимости , где - время эксплуатации; зависит от концентрации кислот и принимается: при рН = 6 =1,25·10 cм/cyт; пpи pH=4 =4,5·10; пpи pH=1 =8,5
·10.
3.1.10. Второму виду коррозии подвержены железобетонные конструкции резервуаров в условиях болотных вод (рН=6), заболоченных грунтов. К этому виду коррозии относятся и процессы карбонизации бетона под действием углекислоты, образующейся при взаимодействии углекислого газа воздуха в поровой жидкости цементного камня. На начальной стадии карбонизации поверхностный слой бетона уплотняется вследствие выпадения в осадок карбоната кальция СаСО в порах бетона. При увеличении количества углекислоты образуется легкорастворимый бикарбонат кальция Са(НСО), который легко вымывается водой, образует натеки на поверхности, при этом возрастает пористость цементного камня. При карбонизации бетона защитного слоя создаются условия для коррозии арматуры. Наибольшая скорость карбонизации происходит при относительной влажности воздуха 50-60%. Замедление карбонизации вызывается уменьшением относительной влажности воздуха менее 50% и повышением ее свыше 85%.
3.1.11. В железобетонных резервуарах процессы карбонизации развиваются в бетоне защитного слоя из торкретбетона на наружной поверхности стенки и внутренних поверхностях конструкций покрытия (особенно в условиях повышенного давления и вакуума).
Глубину карбонизации защитного слоя () можно оценивать в зависимости от В/Ц - водоцементного отношения в бетоне (растворе) по формуле = 5,0В/Ц-1,3, где зависит от времени эксплуатации . При =5 лет =0,3; при =10 лет =0,1; при =20 лет =
0,01.
3.1.12. Защита бетона от развития процессов коррозии второго вида:
первичная защита - применение бетонов с низким В/Ц; использование цементов с наименьшим содержанием свободного Са(ОН) и минеральными добавками кремнезема, связывающими гидроксид кальция;
вторичная защита - изоляция поверхности бетона пропиточными, лакокрасочными полимерными материалами, облицовками (СНиП 2.03.11-85 [11]).
3.1.13. Коррозия бетона третьего вида наблюдается, когда в результате капиллярного подсоса солевые растворы проникают в поры бетона, затем при испарении грунтовых вод их концентрация увеличивается и происходит кристаллизация с увеличением объема в 1,5-3 раза, что приводит сначала к уплотнению бетона, потом к появлению трещин и, наконец, к разрушению. К этому виду коррозии могут быть отнесены процессы, происходящие при действии грунтовых вод с повышенным содержанием сульфат-ионов SO (более 400 мг/л). В результате взаимодействия происходит связывание алюминатов цементного камня, образование и рост кристаллов гидросульфоалюмината кальция (эттрингита, который увеличивается в объеме в 4,76 раза) и гипса. Скорость коррозии зависит от концентрации SO в воде и от количества алюминатов в цементном камне, а также от суммарной концентрации солей в грунтах.