Статус документа
Статус документа

ГОСТ Р 8.580-2001 Государственная система обеспечения единства измерений (ГСИ). Определение и применение показателей прецизионности методов испытаний нефтепродуктов (с Изменением N 1)

ПРИЛОЖЕНИЕ Г
(обязательное)

     
Примеры представления результатов испытаний по определению бромного числа и статистические таблицы

          

В таблицах Г.1 и Г.2 представлены примеры представления результатов испытаний по определению бромного числа.

В таблицах Г.3-Г.7 представлены критические значения, используемые при обработке результатов измерений.


Таблица Г.1 - Бромное число для низкокипящих проб

Обозначение лаборатории

Бромное число для пробы

  

1

2

3

4

5

6

7

8

А

1,9

64,5

0,80

3,7

11,0

46,1

114,8

1,2


2,1

65,5

0,78

3,8

11,1

46,5

114,2

1,2

B

1,7

65,4

0,69

3,7

11,1

50,3

114,5

1,2


1,8

66,0

0,72

3,7

11,0

49,9

114,3

1,2

C

1,8

63,5

0,76

3,5

10,4

48,5

112,4

1,3

  

1,8

63,8

0,76

3,5

10,5

48,2

112,7

1,3

D

4,1

63,6

0,80

4,0

10,8

49,6

108,8

1,0


4,0

63,9

0,80

3,9

10,8

49,9

108,2

1,1

E

2,1

63,9

0,83

3,7

10,9

47,4

115,6

1,3


1,8

63,7

0,83

3,7

11,1

47,6

115,1

1,4

F

1,8

70,7

0,72

3,4

11,5

49,1

121,0

1,4

  

1,7

69,7

0,64

3,6

11,2

47,9

117,9

1,4

G

1,9

63,8

0,77

3,5

10,6

46,1

114,1

1,1


2,2

63,6

0,59

3,5

10,6

45,5

112,8

0,93

H

2,0

66,5

0,78

3,2

10,7

49,6

114,8

1,1


1,8

65,5

0,71

3,5

10,7

48,5

114,5

1,0

J

2,1

68,2

0,81

4,0

11,1

49,1

115,7

1,4


2,1

65,3

0,81

3,7

11,1

47,9

113,9

1,4



Таблица Г.2 - Кубический корень из бромного числа для низкокипящих проб

Обозначение лаборатории

Значение для пробы

  

1

2

3

4

5

6

7

8

A

1,239

4,010

0,928

1,547

2,224

3,586

4,860

1,063

  

1,281

4,031

0,921

1,560

2,231

3,596

4,852

1,063

B

1,193

4,029

0,884

1,547

2,231

3,691

4,856

1,063


1,216

4,041

0,896

1,547

2,224

3,682

4,853

1,063

C

1,216

3,990

0,913

1,518

2,183

3,647

4,826

1,091


1,216

3,996

0,913

1,518

2,190

3,639

4,830

1,091

D

1,601

3,992

0,928

1,587

2,210

3,674

4,774

1,000


1,587

3,998

0,928

1,574

2,210

3,682

4,765

1,032

E

1,281

3,998

0,940

1,547

2,217

3,619

4,871

1,091


1,216

3,994

0,940

1,547

2,231

3,624

4,864

1,119

F

1,216

4,135

0,896

1,504

2,257

3,662

4,946

1,119


1,193

4,115

0,862

1,533

2,237

3,632

4,903

1,119

G

1,239

3,996

0,917

1,518

2,197

3,586

4,850

1,032


1,301

3,992

0,839

1,518

2,197

3,570

4,832

0,976

H

1,260

4,051

0,921

1,474

2,204

3,674

4,860

1,032


1,216

4,031

0,892

1,518

2,204

3,647

4,856

1,000

J

1,281

4,086

0,932

1,587

2,231

3,662

4,873

1,119


1,281

4,027

0,932

1,547

2,231

3,632

4,847

1,119



Таблица Г.3 - Критические значения критерия Кохрена для 1%-ного уровня значимости для оценок дисперсий и степеней свободы

Критическое значение критерия Кохрена при числе степеней свободы

  

1

2

3

4

5

10

15

20

30

50

3

0,9933

0,9423

0,8831

0,8335

0,7933

0,6743

0,6145

0,5775

0,5327

0,4872

4

0,9676

0,8643

0,7814

0,7212

0,6761

0,5536

0,4964

0,4620

0,4213

0,3808

5

0,9279

0,7885

0,6957

0,6329

0,5875

0,4697

0,4168

0,3855

0,3489

0,3131

6

0,8828

0,7218

0,6258

0,5635

0,5195

0,4084

0,3597

0,3312

0,2982

0,2661

7

0,8376

0,6644

0,5685

0,5080

0,4659

0,3616

0,3167

0,2907

0,2606

0,2316

8

0,7945

0,6152

0,5209

0,4627

0,4227

0,3248

0,2832

0,2592

0,2316

0,2052

9

0,7544

0,5727

0,4810

0,4251

0,3870

0,2950

0,2563

0,2340

0,2086

0,1842

10

0,7175

0,5358

0,4469

0,3934

0,3572

0,2704

0,2342

0,2135

0,1898

0,1673

11

0,6837

0,5036

0,4175

0,3663

0,3318

0,2497

0,2157

0,1963

0,1742

0,1532

12

0,6528

0,4751

0,3919

0,3428

0,3099

0,2321

0,2000

0,1818

0,1611

0,1414

13

0,6245

0,4498

0,3695

0,3223

0,2909

0,2169

0,1865

0,1693

0,1498

0,1313

14

0,5985

0,4272

0,3495

0,3043

0,2741

0,2036

0,1748

0,1585

0,1400

0,1226

15

0,5747

0,4069

0,3318

0,2882

0,2593

0,1919

0,1645

0,1490

0,1315

0,1150

20

0,4799

0,3297

0,2654

0,2288

0,2048

0,1496

0,1274

0,1150

0,1010

0,0879

25

0,4130

0,2782

0,2220

0,1904

0,1699

0,1230

0,1043

0,0939

0,0822

0,0713

30

0,3632

0,2412

0,1914

0,1635

0,1455

0,1046

0,0885

0,0794

0,0694

0,0600

35

0,3247

0,2134

0,1685

0,1435

0,1274

0,0912

0,0769

0,0690

0,0601

0,0519

40

0,2940

0,1916

0,1507

0,1281

0,1136

0,0809

0,0681

0,0610

0,0531

0,0457

45

0,2690

0,1740

0,1364

0,1158

0,1025

0,0727

0,0611

0,0547

0,0475

0,0409

50

0,2481

0,1596

0,1248

0,1057

0,0935

0,0661

0,0555

0,0496

0,0431

0,0370

60

0,2151

0,1371

0,1068

0,0902

0,0796

0,0561

0,0469

0,0419

0,0363

0,0311

70

0,1903

0,1204

0,0935

0,0788

0,0695

0,0487

0,0407

0,0363

0,0314

0,0269

80

0,1709

0,1075

0,0832

0,0701

0,0617

0,0431

0,0360

0,0320

0,0277

0,0236

90

0,1553

0,0972

0,0751

0,0631

0,0555

0,0387

0,0322

0,0287

0,0248

0,0211

100

0,1424

0,0888

0,0685

0,0575

0,0505

0,0351

0,0292

0,0260

0,0224

0,0191



Эти значения представляют осторожные аппроксимации, рассчитанные с помощью неравенства Бонферрони [4] как верхняя 0,01/ фрактиль бета-распределения. Промежуточные значения в колонке для оценок дисперсии могут быть получены с помощью линейной интерполяции обратных величин табулированных значений. Промежуточные значения для степеней свободы могут быть получены с помощью интерполяции второго порядка (квадратической) для обратных величин табулированных значений.


Таблица Г.4 - Критические значения, используемые для выявления аномальных результатов при испытании по Хокинсу для (0200) и (350)

Критическое значение при числе степеней свободы

 

0

5

10

15

20

30

40

50

70

100

150

200

3

0,8165

0,7240

0,6100

0,5328

0,4781

0,4049

0,3574

0,3233

0,2769

0,2340

0,1926

0,1674

4

0,8639

0,7505

0,6405

0,5644

0,5094

0,4345

0,3850

0,3492

0,3000

0,2541

0,2096

0,1824

5

0,8818

0,7573

0,6530

0,5796

0,5258

0,4510

0,4012

0,3647

0,3142

0,2668

0,2204

0,1920

6

0,8823

0,7554

0,6547

0,5869

0,5347

0,4612

0,4115

0,3749

0,3238

0,2755

0,2280

0,1988

7

0,8733

0,7493

0,6567

0,5898

0,5394

0,4676

0,4184

0,3819

0,3307

0,2819

0,2337

0,2039

8

0,8596

0,7409

0,6538

0,5901

0,5415

0,4715

0,4231

0,3869

0,3358

0,2868

0,2381

0,2079

9

0,8439

0,7314

0,6493

0,5886

0,5418

0,4738

0,4262

0,3905

0,3396

0,2906

0,2416

0,2112

10

0,8274

0,7213

0,6439

0,5861

0,5411

0,4750

0,4283

0,3930

0,3426

0,2936

0,2445

0,2139

11

0,8108

0,7111

0,6380

0,5828

0,5394

0,4753

0,4295

0,3948

0,3448

0,2961

0,2469

0,2162

12

0,7947

0,7010

0,6318

0,5790

0,5373

0,4750

0,4302

0,3960

0,3466

0,2981

0,2489

0,2181

13

0,7791

0,6910

0,6254

0,5749

0,5347

0,4742

0,4304

0,3968

0,3479

0,2997

0,2507

0,2198

14

0,7642

0,6812

0,6189

0,5706

0,5319

0,4731

0,4302

0,3972

0,3489

0,3011

0,2521

0,2212

15

0,7500

0,6717

0,6125

0,5662

0,5288

0,4717

0,4298

0,3973

0,3496

0,3021

0,2534

0,2225

16

0,7364

0,6625

0,6061

0,5617

0,5256

0,4701

0,4291

0,3972

0,3501

0,3030

0,2544

0,2236

17

0,7235

0,6535

0,5998

0,5571

0,5223

0,4683

0,4282

0,3968

0,3504

0,3037

0,2554

0,2246

18

0,7112

0,6449

0,5936

0,5526

0,5189

0,4665

0,4272

0,3964

0,3505

0,3043

0,2562

0,2254

19

0,6996

0,6365

0,5876

0,5480

0,5155

0,4645

0,4260

0,3958

0,3506

0,3047

0,2569

0,2262

20

0,6884

0,6286

0,5816

0,5436

0,5120

0,4624

0,4248

0,3951

0,3505

0,3051

0,2575

0,2269

21

0,6778

0,6209

0,5758

0,5392

0,5086

0,4603

0,4235

0,3942

0,3503

0,3053

0,2580

0,2275

22

0,6677

0,6134

0,5702

0,5348

0,5052

0,4581

0,4221

0,3934

0,3500

0,3055

0,2584

0,2280

23

0,6581

0,6062

0,5647

0,5305

0,5018

0,4559

0,4206

0,3924

0,3496

0,3056

0,2588

0,2285

24

0,6488

0,5993

0,5593

0,5263

0,4984

0,4537

0,4191

0,3914

0,3492

0,3056

0,2591

0,2289

25

0,6400

0,5925

0,5540

0,5221

0,4951

0,4515

0,4176

0,3904

0,3488

0,3056

0,2594

0,2293

26

0,6315

0,5861

0,5490

0,5180

0,4918

0,4492

0,4160

0,3893

0,3482

0,3054

0,2596

0,2296

27

0,6234

0,5798

0,5440

0,5140

0,4885

0,4470

0,4145

0,3881

0,3477

0,3053

0,2597

0,2299

28

0,6156

0,5737

0,5392

0,5101

0,4853

0,4447

0,4129

0,3870

0,3471

0,3051

0,2599

0,2302

29

0,6081

0,5678

0,5345

0,5063

0,4821

0,4425

0,4113

0,3858

0,3464

0,3049

0,2600

0,2304

30

0,6009

0,5621

0,5299

0,5025

0,4790

0,4403

0,4097

0,3846

0,3458

0,3047

0,2600

0,2306

35

0,5686

0,5361

0,5086

0,4848

0,4641

0,4294

0,4016

0,3785

0,3421

0,3031

0,2600

0,2312

40

0,5413

0,5136

0,4897

0,4688

0,4504

0,4191

0,3936

0,3722

0,3382

0,3010

0,2594

0,2314

45

0,5179

0,4939

0,4728

0,4542

0,4377

0,4094

0,3859

0,3660

0,3340

0,2987

0,2586

0,2312

50

0,4975

0,4764

0,4577

0,4410

0,4260

0,4002

0,3785

0,3600

0,3299

0,2962

0,2575

0,2308



Критические значения в таблице откорректированы до четвертого десятичного знака в диапазоне значений (330) и 0; 5; 15 и 30 [4]. Другие значения выведены с помощью неравенства Бонферрони

,                                                                                               (Г.1)

          

где является верхней 0,005/ фрактилью переменной с степенями свободы. Рассчитанные таким образом значения являются довольно осторожными оценками с максимальной ошибкой относительно истинного значения около 0,0002. Промежуточные значения для и могут быть получены с помощью интерполяции второго порядка, использующей квадрат обратных величин табулированных значений. Подобным образом экстраполяция второго порядка может быть использована для оценки значений, превосходящих 50 и 200.


Таблица Г.5 - Критические значения для -критерия Стьюдента

Критические значения при уровне значимости при двусторонней постановке задачи, %

50

40

30

20

10

5

1

1

1,000

1,376

1,963

3,078

6,314

12,706

63,657

2

0,816

1,061

1,386

1,886

2,920

4,303

9,925

3

0,765

0,978

1,250

1,638

2,353

3,182

5,841

4

0,741

0,941

1,190

1,533

2,132

2,776

4,604

5

0,727

0,920

1,156

1,476

2,015

2,571

4,032

6

0,718

0,906

1,134

1,440

1,943

2,447

3,707

7

0,711

0,896

1,119

1,415

1,895

2,365

3,499

8

0,706

0,889

1,108

1,397

1,860

2,306

3,355

9

0,703

0,883

1,100

1,383

1,833

2,262

3,250

10

0,700

0,879

1,093

1,372

1,812

2,228

3,165

11

0,697

0,876

1,088

1,363

1,796

2,201

3,106

12

0,695

0,873

1,083

1,356

1,782

2,179

3,055

13

0,694

0,870

1,079

1,350

1,771

2,160

3,012

14

0,692

0,868

1,076

1,345

1,761

2,145

2,977

15

0,691

0,866

1,074

1,341

1,753

2,131

2,947

16

0,690

0,865

1,071

1,337

1,746

2,120

2,921

17

0,689

0,863

1,069

1,333

1,740

2,110

2,898

18

0,688

0,862

1,067

1,330

1,734

2,101

2,878

19

0,688

0,861

1,066

1,328

1,729

2,093

2,861

20

0,687

0,860

1,064

1,325

1,725

2,086

2,845

21

0,686

0,859

1,063

1,323

1,721

2,080

2,831

22

0,686

0,858

1,061

1,321

1,717

2,074

2,819

23

0,685

0,858

1,060

1,319

1,714

2,069

2,807

24

0,685

0,857

1,059

1,318

1,711

2,064

2,797

25

0,684

0,856

1,058

1,316

1,708

2,060

2,787

26

0,684

0,856

1,058

1,315

1,706

2,056

2,779

27

0,684

0,855

1,057

1,314

1,703

2,052

2,771

28

0,683

0,855

1,056

1,313

1,701

2,048

2,763

29

0,683

0,854

1,055

1,311

1,699

2,045

2,756

30

0,683

0,854

1,055

1,310

1,697

2,042

2,750

40

0,681

0,851

1,050

1,303

1,684

2,021

2,704

50

0,680

0,849

1,048

1,299

1,676

2,008

2,678

60

0,679

0,848

1,046

1,296

1,671

2,000

2,660

120

0,677

0,845

1,041

1,289

1,658

1,980

2,617


0,674

0,842

1,036

1,282

1,645

1,960

2,576