Применение в качестве национального стандарта РФ прекращено
Профессиональные справочные системы
для специалистов строительной отрасли


ГОСТ ИСО 5347-0-95

Группа П18

     

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Вибрация

МЕТОДЫ КАЛИБРОВКИ ДАТЧИКОВ ВИБРАЦИИ И УДАРА

Часть 0. Общие положения

Vibration. Methods for the calibration of vibration and shock pick-ups. Part 0. Basic concepts



ОКС 17 020

ОКП 42 7746

Дата введения 1997-07-01

     

Предисловие

1 РАЗРАБОТАН Техническим комитетом по стандартизации ТК 183 "Вибрация и удар"

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол N 8-95 от 12 октября 1995 г.)

За принятие проголосовали

Наименование государства

Наименование национального органа по стандартизации

Республика Белоруссия

Белстандарт

Республика Казахстан

Госстандарт Республики Казахстан

Российская Федерация

Госстандарт России

Республика Таджикистан

Таджикский государственный центр по стандартизации, метрологии и сертификации

Туркменистан

Туркменглавгосинспекция

Украина

Госстандарт Украины



3 Настоящий стандарт представляет собой полный аутентичный текст ИСО 5347-0-87 "Вибрация. Методы калибровки датчиков вибрации и удара. Часть 0. Общие положения"

4 ВВЕДЕН ВПЕРВЫЕ

5 Постановлением Комитета Российской Федерации по стандартизации, метрологии и сертификации от 30.05.96 N 339 межгосударственный стандарт ГОСТ ИСО 5347-0-95 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 июля 1997 г.

     1 ОБЛАСТЬ ПРИМЕНЕНИЯ


Настоящий стандарт распространяется на датчики (преобразователи) ускорения, скорости и перемещения линейной вибрации и удара и устанавливает основные положения методов их калибровки.

Стандарт не распространяется на датчики угловой вибрации, а также датчики силы, давления и деформации, даже в том случае, если они могут быть калиброваны подобными методами.

     2 НОРМАТИВНЫЕ ССЫЛКИ


В настоящем стандарте использована ссылка на ГОСТ 24346-80 Вибрация. Термины и определения.

     3 ОПРЕДЕЛЕНИЯ


Термины, применяемые в настоящем стандарте, и их определения - по ГОСТ 24346 и приведенные ниже.

3.1 Датчик - устройство, предназначенное для преобразования измеряемого параметра механического движения, например, ускорения, в величину, удобную для измерения или записи.

Примечание - Датчик может включать в себя дополнительные устройства, обеспечивающие необходимое рабочее напряжение, индикацию или запись его выходного сигнала и др.

3.1.1. Взаимный (обратимый) датчик - двусторонний электромеханический датчик, для которого отношение приложенного тока к возникающей силе (когда скорость движения датчика равна нулю) равно отношению приложенной скорости к возникающему напряжению (когда ток в датчике равен нулю). Такими датчиками являются электродинамический и пьезоэлектрический датчики.

3.1.2. Односторонний датчик - датчик, использующий тензочувствительные элементы, для которых электрическое возбуждение не вызывает ощутимый механический эффект в датчике.

3.2. Рабочий диапазон - диапазон частот или амплитуд, в котором датчик является линейным в пределах нормированных допусков.

3.3. Входной сигнал - сигнал, приложенный к входу датчика, например, затухающий сигнал, приложенный к его посадочной поверхности.

3.4. Выходной сигнал - сигнал, генерируемый датчиком, как отклик на входной сигнал.

3.5. Чувствительность (коэффициент преобразования) - для линейного датчика это отношение выходного сигнала к входному при синусоидальном воздействии, приложенном к посадочной поверхности вдоль оси чувствительности датчика. В общем случае, чувствительность включает в себя информацию как об амплитуде, так и о частоте и, следовательно, является комплексной величиной, зависящей от частоты.

Синусоидальное входное движение может быть выражено следующими уравнениями:

 ;         (1)

  ;       (2)

    (3)

,     (4)


где   - комплексная величина перемещения;

- комплексная величина скорости;

- комплексная величина ускорения;

- комплексная величина выходного сигнала;

- амплитуда синусоидального перемещения;

- амплитуда синусоидальной скорости;

- амплитуда синусоидального ускорения;

- амплитуда выходного сигнала;

- круговая частота;

, - фазовые углы;

- мнимая единица;

-

 время.

3.5.1 Чувствительность по перемещению в единицах выходного сигнала на метр рассчитывают по формуле

,                                               (5)


где - амплитуда чувствительности по перемещению;

- сдвиг фаз.

3.5.2 Чувствительность по скорости в единицах выходного сигнала на м/с рассчитывают по формуле

,                                        (6)


где - амплитуда чувствительности по скорости;

- сдвиг фаз.

3.5.3 Чувствительность по ускорению в единицах выходного сигнала на м/с рассчитывают по формуле

,                                          (7)


где - амплитуда чувствительности по ускорению;

- сдвиг фаз.

Примечания

1 Обычно чувствительность по перемещению определяют для датчиков перемещения; чувствительность по скорости - для датчиков скорости; чувствительность по ускорению - для датчиков ускорения. В общем случае амплитуды и фазовые углы чувствительности являются функциями частоты .

2 Датчики перемещения, скорости и ускорения, чувствительность которых при достижении нулевого значения частоты не становится равной нулю, называют датчиками с нулевой частотной характеристикой (характеристикой постоянного тока). При постоянном ускорении частота и сдвиг фаз равны нулю. Примерами датчиков с нулевой частотной характеристикой являются датчики ускорения, использующие в качестве чувствительных элементов тензорезисторы, потенциометры, дифференциальные трансформаторы, устройства балансировки силы (серво) или другие аналогичные элементы. Сейсмические генераторные датчики, такие как пьезоэлектрические и электродинамические датчики, являются примером датчиков, не имеющих нулевой частотной характеристики.

3.6 Относительная поперечная чувствительность (относительный коэффициент поперечного преобразования) - отношение выходного сигнала датчика, ориентированного основной осью чувствительности перпендикулярно направлению входного сигнала, к выходному сигналу этого датчика, основная ось чувствительности которого направлена вдоль того же входного сигнала.

3.7 Генератор вибрации - любое устройство для создания и передачи контролируемого движения посадочной поверхности датчика.

Примечание - Генераторы вибрации также называют вибровозбудителями, вибраторами и вибростендами.

     4 ИЗМЕРЯЕМЫЕ ХАРАКТЕРИСТИКИ

4.1 Общие положения

Основной целью калибровки датчика является определение его чувствительности в рабочем диапазоне частот и амплитуд для той степени свободы, в которой датчик предназначен использоваться. Кроме того, может быть важна информация о чувствительности датчика к движению в направлении других пяти степеней свободы. Например, для линейных датчиков ускорения необходимо знать их чувствительность к движению, перпендикулярному направлению оси чувствительности и вращению. Другими важными факторами являются демпфирование, сдвиг фаз, нелинейность или вариация выходного сигнала при изменении амплитуды входного сигнала, чувствительность к воздействию температуры, давления и других внешних условий, таких, например, как движение соединительного кабеля.

4.2 Основные характеристики датчика

4.2.1 Амплитудно-частотная (АЧХ) и фазо-частотная (ФЧХ) характеристики

Чувствительность датчика определяют измерением параметров движения или входного сигнала, прикладываемого к датчику генератором вибрации, и выходного сигнала датчика. При этом датчик устанавливают таким образом, чтобы его ось чувствительности совпадала с направлением движения, возбуждаемого генератором вибрации. С помощью контролируемого регулируемого воздействия, амплитуда и частота которого лежат в пределах соответствующих диапазонов датчика, могут быть откалиброваны как датчики непрерывного действия, так и датчики максимальных значений.

Для выполнения резонансов датчика необходимо наблюдать за его выходным сигналом во время медленного непрерывного изменения частоты генератора вибрации во всем частотном диапазоне датчика.

В функции частоты определяется в основном амплитуда чувствительности. Однако для использования датчиков на частотах, близких к их нижним или верхним пределам, или для специальных целей может потребоваться знание их фазо-частотной характеристики. Она определяется путем измерения сдвига фаз между выходным сигналом датчика и входным механическим воздействием во всем интересующем диапазоне частот.