Этот документ входит в профессиональные
справочные системы «Кодекс» и  «Техэксперт»


ГОСТ 6433.4-71

Группа Е39

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР


Материалы электроизоляционные твердые

МЕТОДЫ ОПРЕДЕЛЕНИЯ ТАНГЕНСА УГЛАДИЭЛЕКТРИЧЕСКИХ ПОТЕРЬ
И ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ ПРИ ЧАСТОТЕ 50 Гц

Solid electrical insulating materials. Methods for evaluation of dielectric power
factor and permittivity at power (50 Hz) frequency



ОКСТУ 3491

Дата введения 1972-07-01

     

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством электротехнической промышленности

РАЗРАБОТЧИКИ:

И.А.Соловьева, В.П.Вайсфельд

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 24.05.71 N 1003

3. ВЗАМЕН ГОСТ 6433-65 в части определения тангенса угла диэлектрических потерь и диэлектрической проницаемости

4. Стандарт соответствует СТ СЭВ 3164-81 в части методов измерения тангенса угла диэлектрических потерь и диэлектрической проницаемости при промышленной частоте 50 Гц

5. В стандарт введен стандарт МЭК 250 (1969)

6. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

Номер пункта

ГОСТ 2789-73

2.13

ГОСТ 6433.1-71

1.7



7. Снято ограничение срока действия Постановлением Госстандарта от 10.09.92 N 1157

8. Переиздание (март 1994 г.) с Изменениями N 1, 2, утвержденными в феврале 1982 г., мае 1987 г. (ИУС 6-82, 9-87)


Настоящий стандарт распространяется на твердые электроизоляционные материалы и устанавливает для этих материалов методы определения:

а) тангенса угла диэлектрических потерь () при частоте 50 Гц;

б) диэлектрической проницаемости () при частоте 50 Гц.

Методы, приведенные в настоящем стандарте, применимы в диапазоне температур от минус 60 до плюс 250 °С.

Стандарт не распространяется на пенопоропласты, конденсаторную бумагу и на электроизоляционные материалы толщиной 0,03 мм и менее.

(Измененная редакция, Изм. N 1, 2).

1. ОТБОР ОБРАЗЦОВ

1.1. Образцы для испытаний не должны иметь видимых невооруженным глазом короблений, препятствующих плотному прилеганию электродов, а также трещин, сколов, вмятин, заусенцев, загрязнений. Поверхности образцов, подвергавшиеся механической обработке, должны быть гладкими, без выбоин и царапин; плоскости образцов должны быть параллельными.

1.2. Обработка образцов не должна изменять свойств материала. Способ обработки должен указываться в стандартах или технических условиях на материал.

1.3. Форма, размеры, количество образцов для испытания должны указываться в стандартах или технических условиях на материал исходя из числа рекомендуемых табл.1 и п.1.5

Таблица 1

Форма образцов

Размер образца (диаметр круга, сторона квадрата, длина трубы), мм

Количество образцов

Плоская (круг, квадрат)

От 25 до 150

Не менее 3

Трубчатая

От 100 до 300



1.4. Образцы должны выбираться такой толщины, чтобы емкость конденсатора с образцом была достаточной для определения ее с точностью, указанной в п.3.2.2.

1.5. В случае, когда толщина плоских трубчатых и цилиндрических образцов не позволяет определить тангенс угла диэлектрических потерь и диэлектрическую проницаемость на образцах, указанных в табл.1, испытания следует проводить на образцах, форма которых приведена на черт.1.

Плоский образец


Трубчатый или цилиндрический образец


- диаметр электрода; - ширина электрода

Черт.1


Примечание. Образцы до толщины 3 мм включительно растачивают в месте расположения электродов до подготовки образцов к испытанию.


В случае необходимости образцы заливочных составов могут быть изготовлены в металлических формах (тарелочках). Рекомендуемые размеры формы:

внутренний диаметр - не менее 100 мм;

внешний диаметр - не менее 110 мм;

высота бортика - не менее 4 мм.

Вид и марка металла для изготовления форм, а также размеры форм должны оговариваться в стандартах или технических условиях на материал.

1.6. Толщину испытываемых образцов определяют как среднее арифметическое измерение в пяти точках в предполагаемой области расположения измерительного электрода. Погрешность измерения не должна превышать ±(1%+0,002 мм).

Разброс по толщине образца не должен превышать 2% при толщинах больше или равных 0,5 мм и 5% при толщинах меньше 0,5 мм.

Толщина лаковой пленки, нанесенной на металлическую пластину, должна определяться посредством измерения общей толщины за вычетом из полученного результата толщины металла. Если металлическая пластина покрыта лаковой пленкой с двух сторон, то полученный результат делят пополам. Метод измерения толщины должен указываться в стандартах или технических условиях на материал.

1.7. Условия нормализации и кондиционирования образцов, а также условия проведения испытания должны указываться в стандартах или технических условиях на материал из числа указанных в ГОСТ 6433.1-71. Если в соответствующих стандартах на материалы не приводятся условия нормализации и кондиционирования, осуществляется только нормализация в соответствии с ГОСТ 6433.1-71.

(Измененная редакция, Изм. N 1).

1.8. Измерение до, во время и после воздействия среды должно производиться на одних и тех же образцах с помощью однотипных электродов.

2. ЭЛЕКТРОДЫ

2.1. Электроды должны обладать высокой проводимостью и обеспечивать хороший электрический контакт по всей поверхности соприкосновения с образцом и не должны оказывать влияния на его свойства. Материал электродов и способ создания контакта с образцом должны соответствовать указанным в табл.2.

Таблица 2

Материал

Способ создания контакта с образцом

Вид испытываемых материалов

Рекомендуемый предел температур применения электродов

Примечание

Электроды из отожженной алюминиевой, оловянной, свинцовой фольги толщиной от 0,005 до 0,02 мм

а) Притирание с помощью тонкого слоя вазелина, трансформаторного, конденсаторного или вазелинового масла, кремнийорганической жидкости и смазки или другого аналогичного материала

Все твердые материалы, на которые не оказывают влияния масла и жидкости, указанные в графе 2

От минус 40 до плюс 180 °С в случае применения трансформатор- ного и конденсаторного масла; от минус 60 до плюс 250 °С в случае применения кремнийорганических жидкостей и смазок

-

б) Припрессовка с нагревом по технической документации, утвержденной в установленном порядке

Пленки и пластмассы

От минус 60 до плюс 250 °С

-

в) Нажатие давлением через резину твердостью не более 4-5 кгс/см, определяемую по ГОСТ 20403-75. Величина давления должна быть указана в стандартах или технических условиях на материал. Если давление не указано, оно должна быть 100 гс/см

Плоские листовые материалы

Допустимая температура применения зависит от нагревостойкости и морозостойкости резины

При температуре 50 °С и выше необходимо использовать кремнийорганическую резину

Электроды из токопроводящей резины

Нажатие давлением. Величина давления должна быть указана в стандартах или технических условиях на материал. Если давление не указано, оно должно быть 100 гс/см

Плоские листовые материалы

Допустимая температура применения зависит от нагревостойкости и морозостойкости резины с учетом изменения ее сопротивления в пределах применяемых температур

-

Электроды из серебра, золота, меди, алюминия

Нанесение распылением металла в вакууме

Материалы, которые при данном способе нанесения электродов не изменяют своих свойств

От минус 60 до плюс 250 °С

-

Электроды из меди, алюминия, серебра, цинка

Нанесение шоопированием металла

То же

То же

-

Электроды из суспензии коллоидного графита в дистиллированной воде

Нанесение кистью с последующей сушкой на воздухе

Непористые материалы

"

-

Электроды из токопроводящих серебряных покрытий, изготовленных из различных видов серебряных паст

а) Нанесение кистью

Материалы, которые при данном способе нанесения электродов не изменяют своих свойств

"

-

б) Нанесение кистью с последующим выжиганием

Материалы, выдерживающие температуру отжига, например, керамика, стекло, слюда

От минус 60 до плюс 250 °С

-

Ртутные электроды

Заливка

Все твердые материалы

От минус 60 до плюс 35 °С

Данные электроды из-за токсичности могут применяться только в исключительных случаях, когда не могут быть применены никакие другие электроды.

Ртутные электроды не должны применяться при температурах выше 35 °С.

Измерение при более высоких температурах  можно производить, применяя сплавы с низкой температурой плавления, например сплав Вуда.

Сплав Вуда следует применять при температурах выше температуры его плавления

Металлические нажимные электроды из нержавеющей стали, цветных (например, медь, латунь) или благородных (например, серебро, золото) металлов

Нажатие давлением. Величина давления должна быть указана в стандартах или технических условиях на материал. Если давление не указано, оно должно быть 100 гс/см

Эластичные (резиноподобные) материалы

От минус 60 до плюс 250 °С

-

          

Примечание. Для обеспечения контакта с электродами из фольги, серебряной пасты, распыленного металла, суспензированного графита рекомендуется применять металлические прижимные электроды из стали, латуни, меди. Давление прижимных электродов на образец должно быть указано в стандартах или технических условиях на материал, если указания отсутствуют, давление электрода на образец должно быть 100 гс/см. В случае применения серебряной пасты или распыленного металла допускается непосредственное припаивание проводов к электродам.

2.2. При определении тангенса угла диэлектрических потерь к диэлектрической проницаемости применяется трехэлектродная система, при которой для измерения применяются измерительный, высоковольтный и охранный электроды (охранное кольцо). При измерении применяются электроды следующих размеров:

а) для плоских образцов - согласно табл.3.

Таблица 3

Диаметр измерительного электрода

10±0,2

25±0,2

50±0,2

75±0,2

100±0,2

Диаметр соответствующего высоковольтного электрода, не менее

20

40

75

100

125

Ширина охранного электрода, не менее

2

5

10

10

10


Примечания:

1. Ширина охранного электрода должна быть не менее двойной толщины образца.

2. Для образцов толщиной менее 0,5 мм допускается измерение производить без охранного электрода в том случае, если поверхностной утечкой можно пренебречь, но при этом необходимо учитывать краевую емкость.


Величина зазора между измерительным и охранным электродами должна быть (2±0,2) мм. Допускается применение прямоугольных электродов. При применении прямоугольных электродов площадь измерительного электрода должна быть примерно равна площади круглых электродов, приведенных в табл.3.

б) для трубчатого и цилиндрического образцов ширина высоковольтного электрода должна быть от 75 до 300 мм, ширина измерительного электрода - от 50 до 250 мм, ширина охранного электрода - не менее 10 мм.

Величина зазора между измерительным и охранным электродами должна быть (2±0,2) мм. Для испытания трубчатых и цилиндрических образцов при взаимных поставках странам - членам СЭВ площадь измерительного электрода должна быть приблизительно равна площади круглого электрода из числа приведенных в табл.3.

2.3. Расположение электродов при измерении тангенса угла диэлектрических потерь и диэлектрической проницаемости на нерасточенных образцах указано на черт.2а и 3а; на расточенных образцах - на черт.2б и 3б.

Расположение электродов на плоском образце