ГОСТ 22061-76*
Группа Г02
ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
МАШИНЫ И ТЕХНОЛОГИЧЕСКОЕ ОБОРУДОВАНИЕ.
СИСТЕМА КЛАССОВ ТОЧНОСТИ БАЛАНСИРОВКИ
Основные положения
Machines and technological equipment.
Balance quality grade system. General
Дата введения 1977-07-01
Постановлением Государственного комитета стандартов Совета Министров СССР от 24 августа 1976 г. N 2008 срок введения установлен с 01.07.77
* ПЕРЕИЗДАНИЕ (сентябрь 1993 г.) с Изменением N 1, утвержденным в январе 1983 г. (ИУС 5-83)
Настоящий стандарт устанавливает классы точности балансировки для жестких роторов изделий, а также требования к балансировке и методы расчета дисбалансов.
Стандарт соответствует международному стандарту ИСО 1940 в части содержания и классов точности балансировки с 1 по 11. Термины и определения - по ГОСТ 19534-74 и ГОСТ 16504-81.
(Измененная редакция, Изм. N 1).
1.1. Классы точности балансировки должны соответствовать указанным в таблице.
Класс точности балансировки | Значения произведения удельного дисбаланса () на максимальную эксплуатационную угловую скорость вращения () , мм·рад/с | |
наименьшее | наибольшее | |
(0)* | (0,064) | (0,16) |
1 | 0,16 | 0,40 |
2 | 0,40 | 1,00 |
3 | 1,00 | 2,50 |
4 | 2,50 | 6,30 |
5 | 6,30 | 16,00 |
6 | 16,00 | 40,00 |
7 | 40,00 | 100,00 |
8 | 100,00 | 250,00 |
9 | 250,00 | 630,00 |
10 | 630,00 | 1600,00 |
11 | 1600,00 | 4000,00 |
(12)* | (4000,00) | (10000,00) |
_________________
* Применять факультативно.
Примечание. Наибольшие и наименьшие значения произведений , определяющие границы классов, образуют геометрическую прогрессию со знаменателем 2,5.
1.2. Расположение полей классов точности балансировки показано на черт.1.
Система классов точности балансировки
Черт.1
Роторы в изделиях с горизонтальной осью вращения, попадающие в область ниже линии , где , создают в опорах динамические нагрузки от дисбалансов меньшие, чем статические нагрузки от веса ротора.
Роторы в изделиях с горизонтальной осью вращения, попадающие в область выше линии , где , создают в опорах динамические нагрузки, большие, чем статические нагрузки от веса ротора (в этом случае, если нет других, кроме веса статических нагрузок, при выборе класса точности балансировки следует учитывать радиальные зазоры в подшипниках).
Примечания:
1. Границы классов показаны сплошными линиями. По оси ординат отложены значения удельного дисбаланса в г·мм/кг, в мкм. По оси абсцисс отложены значения максимальной эксплуатационной частоты вращения ротора в мин (об/мин) или в , т.е. в герцах (Гц).
2. Максимальная эксплуатационная угловая скорость вращения ротора связана с максимальной эксплуатационной частотой вращения соотношениями:
(рад/с), (1)
где в об/мин;
, (2)
если в герцах.
3. Линия соответствует произведению мм·с, т.е. ускорению силы тяжести.
2.1. Установить верхнее значение главного вектора допустимых дисбалансов по формулам:
для ротора, балансируемого в изделии в сборе
; (3)
для ротора, балансируемого в виде отдельной детали
, (4)
где - масса ротора, состоящая из всех деталей, которые вращаются в собранном изделии как одно целое (например, собственно ротор, насаженные на него маховики, колеса вентиляторов, шкивы, шестерни, вращающиеся вместе с ротором кольца подшипников качения и т.д.);
- табличное значение удельного дисбаланса, определяемое для данного собранного изделия по верхней границе установленного класса точности балансировки и максимальной эксплуатационной частоте вращения его ротора;
- значение главного вектора технологических дисбалансов изделия, ротор которого балансировался не в сборе (определяется по п.5.9);
- значение главного вектора эксплуатационных дисбалансов изделия (определяется по п.5.10).
Примечания:
1. Технологические дисбалансы возникают при сборе ротора, если он балансировался не в изделии в сборе, из-за монтажа на него деталей (шкивов, полумуфт, подшипников, вентиляторов и т.д.), которые имеют собственные дисбалансы, вследствие отклонения формы и расположения поверхностей и посадочных мест, радиальных зазоров и т.д.
2. Эксплуатационные дисбалансы возникают из-за неравномерности износа, релаксации, выжигания, кавитации деталей ротора (например, рабочих колес насосов, вентиляторов, турбин), деформации деталей ротора под влиянием рабочей температуры ротора, неравномерности распределения материала на рабочей поверхности центрифуги, действия шатунных и поступательно движущихся масс в поршневых машинах, за заданный технический ресурс или до ремонта, предусматривающего балансировку.
2.2. Установить нижнее значение главного вектора допустимых дисбалансов, приложенного к центру масс ротора, по формулам:
для ротора, балансируемого в изделии в сборе
; (5)
для ротора, балансируемого в виде отдельной детали или сборочной единицы
. (6)
2.3. Для двухопорных роторов (черт.2-4) верхние и нижние значения допустимых дисбалансов в каждой из двух плоскостей коррекции 1 и 2 следует определять по формулам:
; (7)
; (8)
; (9)
. (10)
Черт.2
Черт.3
Черт.4
Примечания:
1. Верхние и нижние значения допустимых дисбалансов в плоскости опор, измерения или приведения определяют по этим же формулам и черт.2-4, подставляя вместо и расстояния от опоры до соответствующих плоскостей.
2. При расчете необходимо учитывать, что наибольшие значения дисбалансов и являются предельными, независимо от направления их действия, определяемого видами неуравновешенностей ротора (статической, моментной или динамической).
3.1. Роторы изделий, отнесенных к 1-му классу точности балансировки, следует балансировать в своих подшипниках в собственном корпусе при соблюдении всех условий эксплуатации с использованием собственного привода.
3.2. Роторы изделий, отнесенных ко 2-му классу точности балансировки, следует балансировать в собственных подшипниках или в собственном корпусе, со специальным приводом, если нет собственного привода.
3.3. Роторы изделий, отнесенных к 3-11-му классам точности балансировки, разрешается балансировать в виде деталей или сборочных единиц.
3.4. Выбор способа балансировки
3.4.1. Роторы изделий должны проходить динамическую балансировку.