Статус документа
Статус документа

ГОСТ Р 70293-2022



НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Системы автоматизированного проектирования электроники

ПОДСИСТЕМА АВТОМАТИЗИРОВАННОГО АНАЛИЗА ПОКАЗАТЕЛЕЙ НАДЕЖНОСТИ ЭЛЕКТРОННОЙ АППАРАТУРЫ

Electronics automated design systems. Subsystem for automated analysis of reliability indicators for electronic equipment



ОКС 31.020 29.100.01

Дата введения 2022-10-01



Предисловие

     

1 РАЗРАБОТАН Обществом с ограниченной ответственностью "Научно-исследовательский институт "АСОНИКА" (ООО "НИИ "АСОНИКА")

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 165 "Системы автоматизированного проектирования электроники"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 18 августа 2022 г. N 785-ст

4 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N 162-ФЗ "О стандартизации в Российской Федерации". Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе "Национальные стандарты", а официальный текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.rst.gov.ru)

Введение


Причиной разработки стандарта является необходимость автоматизированного анализа показателей надежности электронной аппаратуры (ЭА) на ранних этапах проектирования ЭА на основе математического моделирования и виртуальных испытаний электронной компонентной базы (ЭКБ) и ЭА на внешние воздействующие факторы (ВВФ) и карт рабочих режимов (КРР) ЭКБ для снижения затрат на разработку, производство и обслуживание за счет повышения качества разработок.

Стандарт распространяется на показатели надежности ЭА. Его целью является автоматизация анализа показателей надежности ЭА с применением математического моделирования и виртуальных испытаний ЭКБ и ЭА на ВВФ и КРР ЭКБ, снижение затрат на разработку, производство и обслуживание за счет повышения качества разработок.

Применение математического моделирования и виртуальных испытаний ЭКБ и ЭА на ВВФ и КРР ЭКБ на ранних этапах проектирования до изготовления опытного образца позволит избежать отказов ЭКБ и ЭА или значительно сократить их на этапе испытаний опытного образца, сокращая тем самым количество испытаний опытного образца, возможные итерации по доработке схем и конструкций, затраты на разработку ЭКБ и ЭА при одновременном повышении качества и надежности, в том числе в критических режимах работы, делая ЭКБ и ЭА конкурентоспособными на отечественном и международном рынке [1]-[3].

Использование при анализе показателей надежности ЭА натурных испытаний ЭА на ВВФ невозможно, так как анализ показателей надежности ЭА проводится еще до изготовления опытного образца. Виртуализация испытаний ЭКБ и ЭА на ВВФ при анализе показателей надежности ЭА является безальтернативной. Без применения математического моделирования нельзя определить температуры ЭКБ и другие параметры моделей надежности. Такой подход является информативным, так как благодаря ему на этапе проектирования отслеживается большинство возможных отказов ЭКБ и ЭА по электрическим, тепловым и механическим характеристикам, и эффективным, так как из-за недоработок проектирования ЭКБ и ЭА, вскрытых уже путем натурных испытаний, возможно множество итераций: доработка проекта - испытания опытного образца - доработка проекта и т.д., что значительно увеличивает сроки и стоимость разработки.

Настоящий стандарт определяет требования к подсистеме автоматизированного анализа показателей надежности ЭА на основе математического моделирования и виртуальных испытаний ЭКБ и ЭА на ВВФ при проектировании и КРР ЭКБ.

     1 Область применения

1.1 Настоящий стандарт предназначен для применения предприятиями промышленности и организациями при использовании цифровых двойников электроники и CALS-технологий на ранних этапах проектирования, изготовления и испытаний ЭКБ и ЭА, а также на всех последующих этапах жизненного цикла ЭКБ и ЭА.

1.1.1 Подсистема автоматизированного анализа показателей надежности электронной аппаратуры на ранних этапах проектирования ЭА по результатам математического моделирования ЭКБ и ЭА на ВВФ применяется на ранних этапах проектирования ЭА следующего назначения: промышленная, для энергетики, оборонно-промышленного комплекса, аэрокосмической отрасли, судостроения, медицинская, автомобильная, для навигации и радиолокации, потребительская, для фискального и торгового оборудования, связи (телекоммуникации), вычислительной техники, для автоматизации и интеллектуального управления, систем безопасности, светотехники, автоматизированного транспорта и движущейся робототехники.

1.1.2 ЭА состоит из электронных шкафов и блоков, печатных узлов и ЭКБ (микросхем, транзисторов, резисторов и т.д.).

1.1.3 На ЭКБ и ЭА оказывают влияние внешние дестабилизирующие факторы - электрические, тепловые, механические, климатические, биологические, радиационные, электромагнитные, специальных сред и термические. Внешние дестабилизирующие факторы могут приводить к несоответствиям ЭКБ и ЭА требованиям к их прочности и устойчивости к ВВФ. Настоящий стандарт устанавливает основные положения технологии, позволяющей проводить анализ показателей надежности электронной аппаратуры на основе математического моделирования и виртуализации испытаний ЭКБ и ЭА на ВВФ при проектировании.

1.2 Анализ показателей надежности ЭА должен осуществляться на ранних этапах проектирования ЭА посредством проведения математического моделирования и виртуализации испытаний ЭКБ и ЭА на ВВФ при проектировании. Электрические характеристики ЭКБ определяются путем расчетов по схемам или по результатам инструментальных измерений на макетах.

1.3 Для анализа показателей надежности ЭА методом математического моделирования (виртуализации испытаний ЭКБ и ЭА на ВВФ) должны применяться аттестованные программные средства, а при необходимости - аттестованные программно-аппаратные средства. Требования к программно-аппаратным средствам устанавливаются по согласованию с заказчиками.

     2 Сокращения

В настоящем стандарте применены следующие сокращения:

БД

-

база данных;

ВВФ

-

внешние воздействующие факторы;

КРР

-

карты рабочих режимов;

НТД

-

нормативно-техническая документация;

ПУ

-

печатный узел;

САПР

-

система автоматизированного проектирования;

ТЗ

-

техническое задание;

ЭА

-

электронная аппаратура;

ЭКБ

-

электронная компонентная база

     3 Общие положения

3.1 Целью разработки настоящего стандарта является установление требований к автоматизированному анализу показателей надежности ЭА на основе математического моделирования и виртуальных испытаний ЭКБ и ЭА на ВВФ и КРР ЭКБ.

Для достижения поставленной цели в стандарте устанавливаются следующие единые требования:

- к технологии автоматизированного анализа показателей надежности ЭА на основе комплексной модели надежности;

- подсистеме автоматизированного анализа показателей надежности ЭА;

- подсистеме автоматизированного создания КРР ЭКБ;

- программному обеспечению по математическому моделированию и виртуальным испытаниям ЭКБ и ЭА на ВВФ при проектировании.

3.2 Организация работ по применению технологии автоматизированного анализа показателей надежности ЭА на основе математического моделирования и виртуализации испытаний ЭКБ и ЭА на ВВФ при проектировании устроена следующим образом.

3.2.1 Разработчики схем ЭА получают и передают все электрические характеристики, необходимые для КРР ЭКБ, работникам подразделения предприятия, на которое возложена обязанность выпуска КРР ЭКБ.

3.2.2 Разработчики конструкций ЭА получают и передают все тепловые и механические характеристики, необходимые для КРР ЭКБ, работникам подразделения предприятия, на которое возложена обязанность выпуска КРР ЭКБ.

3.2.3 Разработчики подразделения предприятия, на которое возложена обязанность выпуска КРР ЭКБ, получают и передают все КРР ЭКБ работникам подразделения предприятия, на которое возложена обязанность анализа показателей надежности ЭА.

3.2.4 Работники подразделения предприятия, на которое возложена обязанность заполнения БД ЭКБ и материалов, регулярно для новой ЭКБ заносят в БД ЭКБ всю информацию, необходимую для анализа показателей надежности ЭА и для математического моделирования и виртуализации испытаний ЭКБ и ЭА на ВВФ при проектировании.

     4 Технология автоматизированного анализа показателей надежности ЭА на основе комплексной модели надежности

4.1 Конечной целью автоматизированного анализа является обеспечение требуемых показателей надежности ЭА в условиях ВВФ на основе комплексной модели надежности ЭА.

4.2 Комплексную модель надежности ЭА создают на основе сквозного автоматизированного моделирования физических процессов. Таким образом, предварительно обязательно проводят моделирование всех физических процессов в ЭА, так как на надежность ЭА оказывают влияние ВВФ - электрические, тепловые, механические, климатические, биологические, радиационные, электромагнитные, специальных сред и термические.

4.3 Показатели надежности ЭА определяют исключительно по результатам их моделирования на ВВФ.

4.4 Под комплексностью понимается учет при анализе надежности всего комплекса ВВФ, включающих прежде всего тепловые, механические, электромагнитные воздействия. В состав программного обеспечения виртуальных испытаний на надежность должны входить модули по анализу электрических, тепловых, механических, электромагнитных процессов в ЭА, созданию КРР ЭКБ и анализу показателей надежности. На рисунке 4.1 приведена структура комплексной модели надежности, основанной на виртуальных испытаниях ЭА на внешние тепловые и механические воздействия.

4.5 В процессе проектирования на базе подсистемы управления данными при моделировании (PDM-системы) с использованием подсистем математического моделирования происходит формирование электронной модели цифрового двойника ЭА. С помощью специального графического редактора вводится электрическая схема, которая сохраняется в БД проектов в подсистеме управления данными и передается в виде файла в системы анализа электрических схем, а также в САПР печатных плат. Выходные файлы САПР печатных плат в стандартных форматах (например, PDIF и IDF) сохраняются в БД проектов в подсистеме управления моделированием и направляются в системы 3D-моделирования для создания чертежей.

 

Рисунок 1 - Структура комплексной модели надежности, основанной на виртуальных испытаниях ЭА на внешние тепловые и механические воздействия

4.6 В БД проектов передаются 3D-модели шкафов и блоков ЭКБ и ЭА, созданные в системах 3D-моделирования в стандартных форматах (например, IGES и STEP), которые далее направляются в подсистемы моделирования для анализа механических процессов в шкафах и блоках ЭА (1), а также в подсистему моделирования для анализа тепловых процессов в шкафах и блоках ЭА (3).

4.7 Полученные в результате моделирования ускорения и температуры в конструкциях шкафов и блоков сохраняются в подсистеме управления моделированием (2, 4). Чертежи ПУ и спецификации к ним, а также файлы в стандартных форматах передаются из подсистемы управления моделированием в подсистему для комплексного анализа тепловых и механических процессов в ПУ (5). В данную подсистему также передаются температуры воздуха в узлах, полученные в подсистеме моделирования тепловых процессах в шкафах и блоках ЭА, а также ускорения опор, полученные в подсистемах анализа механической прочности шкафов и блоков (6). Полученные в результате моделирования температуры и ускорения ЭКБ сохраняются в подсистеме управления моделированием (7). Если они не превышают допустимые по НТД значения, то далее проводится анализ показателей надежности ЭКБ и ЭА. Если же превышают, то в электрическую схему и конструкцию ЭА вносятся изменения и расчеты повторяются.

4.8 Перечень ЭКБ, файлы с электрическими характеристиками ЭКБ (8), температурами и ускорениями ЭКБ (9) передаются из подсистемы управления моделированием в подсистему автоматизированного создания КРР ЭКБ. Полученные в результате КРР сохраняются в подсистеме управления моделированием (10). Если электрические характеристики, температуры и ускорения ЭКБ "В схеме" не превышают значения "По НТД", то далее проводится анализ показателей надежности ЭКБ и ЭА. Если же превышают, то вносятся изменения в электрическую схему и конструкцию ЭА и расчеты температур, ускорений, а также создание КРР ЭКБ повторяются.

4.9 Перечень ЭКБ (11), файлы с электрическими характеристиками ЭКБ (12), температурами и ускорениями ЭКБ (13) передаются из подсистемы управления моделированием в подсистему анализа показателей надежности ЭКБ и ЭА. Полученные в результате показатели надежности ЭКБ и ЭА сохраняются в подсистеме управления моделированием (14). Если они не превышают заданные в ТЗ значения, то далее проводится окончательное формирование КРР ЭКБ. Если же превышают, то в электрическую схему и конструкцию ЭА вносятся изменения и расчеты температур, ускорений и показателей надежности ЭКБ и ЭА повторяются.

4.10 Все необходимые для расчетов параметры ЭКБ и материалов автоматически считываются из интегрированной базы данных ЭКБ и материалов по геометрическим, физико-механическим, усталостным, теплофизическим, электрическим, электромагнитным и надежностным параметрам (15).

Доступ к полной версии документа ограничен
Полный текст этого документа доступен на портале с 20 до 24 часов по московскому времени 7 дней в неделю.
Также этот документ или информация о нем всегда доступны в профессиональных справочных системах «Техэксперт» и «Кодекс».
Нужен полный текст и статус документов ГОСТ, СНИП, СП?
Попробуйте «Техэксперт: Лаборатория. Инспекция. Сертификация» бесплатно
Реклама. Рекламодатель: Акционерное общество "Информационная компания "Кодекс". 2VtzqvQZoVs