• Текст документа
  • Статус
Оглавление
Поиск в тексте
Документ в силу не вступил


ГОСТ Р 58968-2020/
IEC/TS 61895:1999


НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ


Техника ультразвуковая

СИСТЕМЫ ДИАГНОСТИЧЕСКИЕ ДОПЛЕРОВСКИЕ ИМПУЛЬСНЫЕ

Методики испытаний для определения рабочих характеристик

Ultrasonics. Pulsed Doppler diagnostic systems. Test procedures to determine performance


ОКС 11.040.55

Дата введения 2021-02-01


Предисловие

1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием "Российский научно-технический центр информации по стандартизации, метрологии и оценке соответствия" (ФГУП "СТАНДАРТИНФОРМ") и Обществом с ограниченной ответственностью "Медтехстандарт" (ООО "Медтехстандарт") на основе собственного перевода на русский язык англоязычной версии документа, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 011 "Медицинские приборы, аппараты и оборудование"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 18 августа 2020 г. N 507-ст

4 Настоящий стандарт идентичен международному документу IEC/TS 61895:1999 "Техника ультразвуковая. Системы диагностические доплеровские импульсные. Методики испытаний для определения рабочих характеристик" (IEC/TS 61895:1999 "Ultrasonics - Pulsed Doppler diagnostic systems - Test procedures to determine performance", IDT).
________________
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты, сведения о которых приведены в дополнительном приложении ДА.

Дополнительные сноски в тексте стандарта, выделенные курсивом, приведены для пояснения текста оригинала

5 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N 162-ФЗ "О стандартизации в Российской Федерации". Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе "Национальные стандарты", а официальный текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Введение


Импульсные ультразвуковые доплеровские расходомеры и велосиметры широко используются в клинической практике, как правило, в сочетании с инструментами для визуализации в B-режиме в режиме реального времени и цветового доплера. Устройство периодически передает ультразвуковые импульсы от ультразвукового преобразователя и измеряет доплеровский сдвиг частоты ультразвука, отраженного и рассеянного от движущихся тканей. Этот доплеровский сдвиг пропорционален проекции скорости отражения или рассеивания на ультразвуковой пучок. Посредством анализа доплеровских сдвигов в принимаемом сигнале в определенные моменты времени после передачи (определение дальности) устройство допускается использовать для определения изменения скорости ткани в зависимости от расстояния вдоль ультразвукового пучка. Устройство чувствительно к движению только в пределах области пучка, называемой исследуемым объемом. Положение исследуемого объема вдоль пучка допускается регулировать, изменяя задержку между передачей и регулируемым приемом. Многоканальные устройства имеют несколько исследуемых объемов, работающих одновременно.

Импульсное ультразвуковое устройство чаще всего используется для исследования кровотока, когда ультразвук рассеивается от эритроцитов.

Настоящий стандарт описывает набор испытаний, которые рекомендуется использовать для измерения технических характеристик, и требуемые для этого тест-объекты. Для многих применений методы испытаний и тест-объекты были рассмотрены в МЭК 61206. Другие методы испытаний и тест-объекты описаны в [1] и [2]. Методы испытаний могут рассматриваться как подпадающие под одну из следующих трех категорий. Первая - это обычные проверки с целью контроля качества, которые могут проводиться врачом или технологом, чтобы убедиться, что система работает адекватно или имеет достаточную чувствительность. Вторая - более сложные методы испытаний, которые проводятся реже, когда, например, возникает подозрение на неисправность системы. Третья представляет собой испытания, которые проводит производитель на укомплектованных системах, чтобы гарантировать соответствие спецификации.

IEC/TS 61895:1999 подготовлен Техническим комитетом 87 МЭК "Ультразвук".

Текст IEC/TS 61895:1999 основан на следующих документах:

Проект TS

Отчет о голосовании

87/151/CDV

87/168/RVC


Полную информацию о голосовании по одобрению IEC/TS 61895:1999 можно найти в отчете о голосовании, указанном в приведенной выше таблице.

Редакция международного стандарта подготовлена в соответствии с Директивами ИСО/МЭК, часть 3.

Приложение A является неотъемлемой частью этого стандарта.

1 Область применения


Настоящий стандарт устанавливает:

- методы испытаний для измерения технических характеристик импульсных доплеровских ультразвуковых систем;

- доплеровские тест-объекты для проведения этих испытаний;

и распространяется:

- на испытания, проводимые на импульсной доплеровской ультразвуковой системе в целом, которая не разобрана и не отключена;

- испытания, выполняемые на импульсных доплеровских ультразвуковых системах, независимо от того, являются они автономными или частью другого ультразвукового прибора.

Требования к электробезопасности, электромагнитной совместимости (ЭМС) и параметрам акустического выхода не включены в настоящий стандарт.

Рабочая нагрузка для выполнения всех описанных испытаний, как правило, чрезмерно высока. Предполагается, что только часть описанных испытаний принимается для обычного (рутинного) использования. Тем не менее опыт для формирования руководства по их выбору еще предстоит наработать, что и будет предметом текущей работы.

2 Нормативные ссылки


В настоящем стандарте использованы нормативные ссылки на следующие стандарты. Для датированных ссылок применяют только указанное издание ссылочного стандарта, для недатированных - последнее издание (включая все изменения).

IEC 61102:1991, Measurement and characterisation of ultrasonic fields using hydrophones in the frequency range 0,5 MHz to 15 MHz (Измерение и характеристика ультразвуковых полей с использованием гидрофонов в диапазоне частот от 0,5 до 15 МГц)ГОСТ Р 58968-2020/IEC/TS 61895:1999 Техника ультразвуковая. Системы диагностические доплеровские импульсные. Методики испытаний для определения рабочих характеристик
_______________
ГОСТ Р 58968-2020/IEC/TS 61895:1999 Техника ультразвуковая. Системы диагностические доплеровские импульсные. Методики испытаний для определения рабочих характеристик Заменен на IEC 62127-1:2007, Ultrasonics - Hydrophones - Part 1: Measurement and characterization of medical ultrasonic fields up to 40 MHz (Ультразвук. Гидрофоны. Часть 1. Измерение и определение характеристик медицинских ультразвуковых полей до 40 МГц), IEC 62127-2:2007, Ultrasonics - Hydrophones - Part 2: Calibration for ultrasonic fields up to 40 MHz (Ультразвук. Гидрофоны. Часть 2. Калибровка для ультразвуковых полей до 40 МГц) и IEC 62127-3:2007, Ultrasonics - Hydrophones - Part 3: Properties of hydrophones for ultrasonic fields up to 40 MHz (Ультразвук. Гидрофоны. Часть 3. Свойства гидрофонов для ультразвуковых полей до 40 МГц). Однако для однозначного соблюдения требований настоящего стандарта, выраженного в датированной ссылке, рекомендуется использовать только указанное в этой ссылке издание.

IEC 61206:1993, Ultrasonics - Continuous-wave Doppler systems - Test procedures (Ультразвук. Доплеровские системы непрерывной волны. Методы испытаний)

IEC 61390:1996, Ultrasonics - Real-time pulse-echo systems - Test procedures to determine the performance specifications (Ультразвук. Эхо-импульсные ультразвуковые диагностические приборы, работающие в режиме реального времени. Методики испытаний для определения рабочих характеристик)

3 Термины и определения


В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1 спектральная ширина 6 дБ (6 dB spectral width): Ширина частотного спектра между частотами, на которых спектральная мощность на 6 дБ менее максимальной мощности.

3.2 спектральная ширина 20 дБ (20 dB spectral width): Ширина частотного спектра между частотами, на которых спектральная мощность на 20 дБ менее максимальной мощности.

3.3 частота акустического воздействия; центральная частота (acoustic working frequency; centre frequency): Частота акустического воздействия в спектре излучаемого импульса, определяемая методом биений.

[МЭК 61102, 3.4, модифицировано]

3.4 наложение спектров (aliasing): Ложная индикация частоты сигнала в результате выборки на слишком низкой частоте.

Примечание - Наложение спектров возникает, когда доплеровская частота превышает предельную частоту Найквиста ультразвуковой доплеровской системы. В ненаправленной системе указанная частота доплеровского сигнала является истинной доплеровской частотой, отраженной в предельной частоте Найквиста. В направленной системе указанная частота доплеровского сигнала является истинной доплеровской частотой, отраженной в предельной частоте Найквиста и измененной в знаке. В системах, использующих базовый сдвиг, термин доплеровская частота должен быть заменен доплеровской частотой плюс базовый сдвиг частоты в вышеприведенном объяснении.

3.5 смещение базовой частоты (baseline frequency shift): Частота, на которую доплеровский сигнал сдвигается перед анализом, чтобы смягчить эффекты наложения.

3.6 В-режим (отображение с модуляцией яркости) [В-mode (brightness-modulated display)]: Изображение, генерируемое ультразвуковым эхоимпульсным сканером, в котором эхосигналы от отражателей и рассеивателей в тканях, озвученных импульсным ультразвуковым пучком, представлены двумерным изображением с модуляцией яркости.

3.7 мешающие отражения (мешающие эхосигналы) (clutter): Нежелательные компоненты доплеровского сигнала, появляющиеся после доплеровского демодулятора.

Примечание - Мешающие отражения возникают из-за неподвижных или медленно движущихся отражателей и, как правило, удаляются фильтрами верхних частот (wall-thump filters) в ультразвуковой доплеровской системе.

3.8 мертвая зона (dead zone): Область рядом с датчиком, в которой система нечувствительна к движению ткани.

3.9 направленный; чувствительный к направлению (directional; direction sensing): Дескриптор типа ультразвуковой доплеровской системы, который указывает, приближаются или удаляются рассеиватели или отражатели от ультразвукового преобразователя.

[МЭК 61206,1.3.1]

3.10 разрешение направления; разделение направления (direction resolving; direction separating): Дескриптор типа ультразвуковой доплеровской системы, в котором доплеровский выходной сигнал появляется на разных выходных клеммах, выходных каналах или устройствах вывода в зависимости от направления движения рассеивателя или отражателя относительно преобразователя.

[МЭК 61206,1.3.2, модифицировано]

3.11 доплеровский угол (Doppler angle): Острый угол между осью ультразвукового пучка при доплеровских измерениях и направлением движения рассеивателя или отражателя.

3.12 доплеровский демодулятор (Doppler demodulator): Часть доплеровской ультразвуковой системы, в которой доплеровский сигнал определяется путем смешивания принимаемого сигнала и опорного сигнала.

3.13 доплеровская частота; частота доплеровского сдвига (Doppler frequency; Doppler-shift frequency): Изменение частоты рассеянной или отраженной ультразвуковой волны, вызванное относительным движением между рассеивателем или отражателем и преобразователем. Это разница в частоте между переданной и принятой волной.

[МЭК 61206, 1.3.3, модифицировано]

3.14 доплеровский выходной разъем (Doppler output connector): Электрический разъем или та часть ультразвуковой доплеровской системы, на которой доступен доплеровский выходной сигнал для подключения к внешним устройствам вывода.

[МЭК 61206, 1.3.5]

3.15 доплеровский выходной сигнал (Doppler output): Сигнал на доплеровской частоте или на доплеровских частотах, который активирует выходное устройство.

[МЭК 61206, 1.3.4, модифицировано]

3.16 доплеровский спектр (Doppler spectrum): Набор доплеровских частот, генерируемых ультразвуковой доплеровской системой.

[МЭК 61206, 1.3.6]

3.17 доплеровский тест-объект (Doppler test object): Искусственная структура, используемая в испытаниях ультразвуковых доплеровских систем.

3.18 ультразвуковая доплеровская система (Doppler ultrasound system): Оборудование, предназначенное для передачи и приема ультразвука и для генерации доплеровского выходного сигнала по разности частот между переданной и принятой волнами.

[МЭК 61206, 1.3.8]

3.19 дуплексный сканер (duplex scanner): Ультразвуковой прибор, который сочетает в себе визуализацию в В-режиме в режиме реального времени с ультразвуковой доплеровской системой.

3.20 номинальная ось направления доплеровского пучка (nominal Doppler beam direction axis): Предполагаемая ось ультразвукового пучка от преобразователя, используемого для доплеровских измерений. Эта ось часто является осью симметрии вращения доплеровского зонда для одноэлементного преобразователя.

3.21 номинальная первая боковая ось доплеровского пучка (nominal first lateral Doppler beam axis): Координатная ось, перпендикулярная к номинальной оси направления доплеровского пучка и имеющая положение, указанное на корпусе зонда для зонда с однолучевым направлением или находящееся в плоскости сканирования для зонда дуплексного или триплексного сканера (см. рисунок А.2).

3.22 номинальная вторая боковая ось доплеровского луча (nominal second lateral Doppler beam axis): Координатная ось, перпендикулярная как к номинальной оси направления доплеровского пучка, так и к номинальной первой боковой оси доплеровского пучка. Эта ось перпендикулярна к плоскости сканирования для зонда дуплексного или триплексного сканера (см. рисунок А.2).

Примечание - Номинальная первая боковая ось доплеровского пучка, номинальная вторая ось доплеровского пучка и номинальная ось направления доплеровского пучка образуют правосторонний набор декартовых координат, как показано на рисунке А.2.

3.23 номинальная длина испытуемого объема (nominal sample volume length): Длина испытуемого объема указывается системой. Как правило, это числовое отображение или расстояние между маркерами на экране, указывающее размер испытуемого объема вдоль номинальной оси направления доплеровского пучка.

3.24 ненаправленный (non-directional): Дескриптор типа ультразвуковой доплеровской системы, которая не определяет направления (движения).

[МЭК 61206, 1.3.9]

3.25 предельная частота Найквиста (Nyquist limit frequency): Половина частоты следования импульсов. В системах, не использующих базовый сдвиг, она равна частоте, при которой наложения частот (эффект наложения) не возникает.

3.26 наблюдаемая скорость (observed velocity): Проекция скорости рассеивателя или отражателя на ось ультразвукового пучка. Она направлена на или от преобразователей.

3.27 выходной канал (output channel): Часть ультразвуковой доплеровской системы, которая обеспечивает доступность доплеровского выходного сигнала.

Примечание - Ультразвуковая допплеровская система может иметь два выходных канала, каждый из которых представляет поток в определенном направлении.

[МЭК 61206, 1.3.12]

3.28 устройство вывода (output device): Любое устройство, включенное в ультразвуковую доплеровскую систему или способное подключаться к нему и делающее доплеровский выходной сигнал доступным для человеческого восприятия.

[МЭК 61206, 1.3.13]

3.29 фазовая квадратурная демодуляция (phase-quadrature demodulation): Метод получения доплеровских сигналов, включающий информацию о направлении потока, при котором два доплеровских демодулятора используются с опорными сигналами, сдвинутыми на 90° по фазе, что приводит к синфазным и квадратурным доплеровским сигналам, сдвинутым на 90° по фазе. Направление фазового сдвига между синфазной и квадратурной частями компонента доплеровского сигнала на определенной частоте указывает направление движения мишени, дающее начало этому компоненту.

3.30 частота повторения импульсов; ЧПИ (pulse repetition frequency; PRF): Количество простых или тональных импульсов ультразвука, излучаемых датчиком в секунду.

3.31 селектор дальности (range gate): Та часть ультразвуковой доплеровской системы, которая выбирает сигналы, принимаемые с различных глубин, для генерации доплеровского сигнала. Это достигается путем выбора сигналов, поступающих в течение интервала времени, задержанного после излучения импульса.

3.32 референсный сигнал (reference signal): Сигнал, смешиваемый с принятым сигналом в доплеровском демодуляторе для получения доплеровского сигнала. В ненаправленных доплеровских ультразвуковых системах или системах, использующих фазовую квадратурную демодуляцию, частота опорного сигнала совпадает с частотой излучения. В смещенных по частоте направленных ультразвуковых доплеровских системах частота опорного сигнала равна сумме или разности частоты излучения и частоты смещения.

3.33 испытуемый объем (sample volume): Область ультразвукового пучка, в которой движущиеся рассеиватели или отражатели вызывают составляющие доплеровского сигнала от ультразвуковой доплеровской системы.

3.34 плоскость сканирования (scan plane): Плоскость, содержащая линии ультразвукового сканирования.

[МЭК 61390, 3.29]

3.35 сонограмма (sonogram): Частотно-временное отображение, на котором относительная амплитуда или мощность каждого частотного компонента обнаруженного сигнала из последовательных или перекрывающихся временных окон отображается в виде смежных вертикальных линий серой шкалы.

3.36 спектральная ширина (spectral width): Диапазон доплеровских частот в пределах доплеровского спектра.

3.37 спектр (spectrum): Отображение амплитуды или мощности в зависимости от частоты, показывающее относительную амплитуду или мощность каждого частотного компонента, содержащегося в обнаруженном сигнале (см. доплеровский спектр).

3.38 струнный тест-объект (string test object): Линия рассеивателей, движущихся с постоянной скоростью в направлении линии и обладающих свойствами рассеяния ультразвука, подобными свойствам движущегося столбика крови.

3.39 система (system): Доплеровская ультразвуковая система. См. 3.18.

3.40 мишень (target): Отражатель, рассеиватель или набор рассеивателей для получения сигнала.

3.41 глубина залегания мишени (target depth): Расстояние от поверхности датчика до мишени вдоль пучка.

3.42 триплекс-сканер (triplex scanner): Ультразвуковой прибор, который сочетает в себе изображение в В-режиме в режиме реального времени и цветовое отображение потока с импульсной ультразвуковой доплеровской системой.

4 Обозначения


с - средняя скорость звука в среде;

L - расстояние от поверхности преобразователя до центра исследуемого объема;

ГОСТ Р 58968-2020/IEC/TS 61895:1999 Техника ультразвуковая. Системы диагностические доплеровские импульсные. Методики испытаний для определения рабочих характеристик - максимальная глубина проникновения импульсной доплеровской ультразвуковой системы;

ГОСТ Р 58968-2020/IEC/TS 61895:1999 Техника ультразвуковая. Системы диагностические доплеровские импульсные. Методики испытаний для определения рабочих характеристик - частота акустического воздействия;

ГОСТ Р 58968-2020/IEC/TS 61895:1999 Техника ультразвуковая. Системы диагностические доплеровские импульсные. Методики испытаний для определения рабочих характеристик - частота синусоидального отклонения от средней частоты моделируемого доплеровского сигнала, используемого при оценке точности определения максимальной, средней, модовой и медианной частот.

5 Полные испытания укомплектованных систем

5.1 Общие соображения

5.1.1 Типы импульсных доплеровских ультразвуковых систем

Импульсная доплеровская ультразвуковая система может быть направленной, ненаправленной или с разрешением по направлению. Направленные (или направленное зондирование) относятся к типу импульсных ультразвуковых доплеровских систем, которые указывают, приближаются или удаляются отражатели или рассеиватели от ультразвукового преобразователя. Ненаправленные доплеровские ультразвуковые системы не указывают направление движения. Ультразвуковые доплеровские системы с разрешением по направлению (или разделением по направлениям) обеспечивают отображение доплеровских выходных сигналов на разных выходных каналах в зависимости от направления движения отражателя или рассеивателя. Система может использовать фазовую квадратурную демодуляцию или демодуляцию смещенной опорной частоты для того, чтобы получить доплеровские сигналы, удерживающие информацию о направлении потока. В приложении А приведены описания и схемы этих различных типов импульсных доплеровских ультразвуковых систем.

Система может быть автономным прибором или частью ультразвукового сканера с В-режимом и/или системой визуализации потока. Автономный прибор может использовать один датчик для передачи и приема или отдельные датчики для этих функций, и в этом случае прибор может быть переключен для работы в режиме непрерывной волны. В сочетании с устройством визуализации в реальном времени в В-режиме для работы в режиме импульсного доплера может быть использован отдельный датчик или тот же датчик, который используется для импульсной эхографии и импульсного доплера.

Система может быть частью дуплексного или триплексного сканера. Дуплексные сканеры позволяют отображать номинальное направление оси доплеровского пучка, используемого для доплеровских измерений, для совместного отображения в В-режиме информации о глубине залегания и длине исследуемого объема. Предусмотрено, чтобы оператор установил электронный маркер параллельно оси отображаемого кровеносного сосуда, чтобы прибор мог рассчитать угол между ультразвуковым пучком и направлением сосуда. Это позволяет преобразовать доплеровские частоты в значения скорости крови, протекающей в направлении оси сосуда. Триплексные сканеры, в дополнение к функциям дуплексных сканеров, дают отображение движущейся крови с цветовой кодировкой в соответствии с ее скоростью, наложенное на изображение в В-режиме.

Система может быть или не быть оснащена автоматической адаптацией рабочих параметров к глубине залегания исследуемого объема и типу ткани между датчиком и исследуемым объемом. Примерами параметров, которые адаптированы таким образом, являются частота повторения импульсов (ЧПИ), глубина фокусировки, апертура преобразователя и спектр передаваемого сигнала.

Система может включать в себя метод спектрального анализа доплеровского сигнала, отображающий нестационарный частотный спектр доплеровского сигнала. Этот частотный анализ может быть основан на быстром преобразовании Фурье (БПФ) или на других методах спектрального анализа. Система может в качестве альтернативы показывать изменяющиеся во времени максимальную, среднюю, модовую или медианную доплеровскую частоту, полученную по анализатору спектра, или, более точно, путем последующей обработки во временном представлении.

Система может включать интерактивные или автоматизированные системы измерения и/или вычисления для дальнейшей обработки данных по результатам спектрального анализа и/или временной зависимости доплеровской частоты - вычисляя, например, показатели формы сигнала и спектральной ширины.

Система может включать средства, позволяющие оператору прослушивать доплеровский сигнал с помощью динамика или наушников.

Система может быть многоканальным прибором, имеющим несколько исследуемых объемов и соответствующих им каналов доплеровского сигнала.

5.1.2 Наихудшие условия

Метод испытания допускается применять для определения какой-либо одной характеристики системы. На работу системы в целом могут зачастую влиять несколько параметров, каждый из которых требует применения отдельного метода испытаний. Для достижения наилучших характеристик системы в целом некоторые из этих параметров должны быть максимизированы, а другие - минимизированы. С учетом эффективности работы системы в целом в таблице 1 приведены наиболее неблагоприятные значения для основных параметров, подходящих для импульсных ультразвуковых доплеровских систем, и соответствующие номера подпунктов, которые описывают подходящий метод испытаний. Например, если проникновение, упомянутое в 5.2.4, сведено к минимуму, то это будет наихудшим случаем для эффективности системы в целом; и наоборот, максимальное проникновение приведет к максимальной эффективности.

Таблица 1 - Наихудшие случаи для различных параметров и соответствующие им номера подпунктов

Наихудший случай - минимальное значение

Наихудший случай - максимальное значение

Величина

Подпункт

Величина

Подпункт

Глубина проникновения

5.2.4

Мертвая зона

5.9

Индекс подавления мешающих эхосигналов

5.4.3.1

Погрешность отклика на высокую частоту

5.4.1

Разделение направлений потока

5.11

Погрешность отклика на низкую частоту

5.4.1

Гармоническое искажение

5.4.3.2

Интермодуляционные искажения

5.4.3.3

Погрешность регистрации исследуемого объема

5.6

Внутреннее расширение

5.8

Погрешность определения положения и ориентации пучка

5.7

Погрешность оценки скорости

5.12

Погрешность оценки объемного расхода

5.13

Доступ к полной версии этого документа ограничен

Ознакомиться с документом вы можете, заказав бесплатную демонстрацию систем «Кодекс» и «Техэксперт».

Что вы получите:

После завершения процесса оплаты вы получите доступ к полному тексту документа, возможность сохранить его в формате .pdf, а также копию документа на свой e-mail. На мобильный телефон придет подтверждение оплаты.

При возникновении проблем свяжитесь с нами по адресу spp@kodeks.ru

ГОСТ Р 58968-2020/IEC/TS 61895:1999 Техника ультразвуковая. Системы диагностические доплеровские импульсные. Методики испытаний для определения рабочих характеристик

Название документа: ГОСТ Р 58968-2020/IEC/TS 61895:1999 Техника ультразвуковая. Системы диагностические доплеровские импульсные. Методики испытаний для определения рабочих характеристик

Номер документа: 58968-2020

Вид документа: ГОСТ Р

Принявший орган: Росстандарт

Статус: Документ в силу не вступил

Опубликован: Официальное издание. М.: Стандартинформ, 2020
Дата принятия: 18 августа 2020

Дата начала действия: 01 февраля 2021