Пример 1 - Рассмотрим время, за которое разряжается батарея, приобретенная потребителем. Если батарея разряжена еще до первого использования, то время разрядки считают равным нулю. Если батарея функционирует некоторое время, то время разрядки указывают в часах. Таким образом, пространство элементарных событий состоит из следующих исходов: {батарея разряжена до первого использования} и {батарея функционировала до разрядки x часов, где x более или равно нулю}. Настоящий пример и далее использован в данном разделе. В частности, обсуждение этого примера приведено в 2.68.
Пример 2 - Коробка содержит 10 резисторов с номерами 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Если из этой коробки случайным образом без замещений выбирают два резистора, пространство элементарных исходов состоит из следующих 45 исходов: (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9), (1, 10), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (2, 8), (2, 9), (2, 10), (3, 4), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9), (3, 10), (4, 5), (4, 6), (4, 7), (4, 8), (4, 9), (4, 10), (5, 6), (5, 7), (5, 8), (5, 9), (5, 10), (6, 7), (6, 8), (6, 9), (6, 10), (7, 8), (7, 9), (7, 10), (8, 9), (8, 10), (9, 10). Выбор пар (1, 2) и (2, 1) считают одним и тем же исходом, т.е. порядок отбора резисторов не важен. В качестве альтернативы можно рассматривать случай, когда выбор пар (1, 2) и (2, 1) считают разными исходами, тогда общее число элементарных исходов пространства элементарных событий будет равно 90.
Пример 3 - Если в предыдущем примере производят отбор с замещением, то в пространство элементарных событий следует включать исходы: (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9) и (10, 10). Когда порядок отбора не важен, число возможных исходов пространства элементарных событий равно 55. Если порядок отбора имеет значение, число возможных исходов равно 100.
Примечание 1 - Исходами могут быть результаты реального или гипотетического эксперимента. Множество исходов может быть явно предъявленным списком, счетным множеством, например таким, как положительные целые числа {1, 2, 3, ...} или действительная прямая.
Примечание 2 - Пространство элементарных событий является первым компонентом вероятностного пространства (2.68).
|
|

|
Пример 1 - Продолжая пример 1 из 2.1, следующие примеры событий {0}, (0, 2), {5,7}, [7, ) соответствуют описаниям: "батарея разряжена до первого использования", "батарея изначально работала и разрядилась до того, как прошло 2 ч с начала использования", "батарея функционировала точно 5,7 ч" и "после 7 ч использования батарея еще функционирует". Исходы {0} и {5,7} представляют собой множества, состоящие из одной точки; исход (0, 2) - открытый интервал действительной прямой; исход [7, ) - замкнутый слева бесконечный интервал действительной прямой.
Пример 2 - Продолжая пример 2 из 2.1, рассмотрим случай неупорядоченного выбора без замещений. Пусть возможное событие A={по крайней мере один из резисторов с номерами 1 и 2 включен в выборку}. Данному событию соответствуют 17 элементарных исходов: (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9), (1, 10), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (2, 8), (2, 9) и (2, 10). Другому возможному событию B={никакой из резисторов с номерами 8, 9, 10 не включен в выборку}. Данному событию соответствует 21 элементарный исход: (1, 2), (1, 3), (1,4), (1, 5), (1, 6), (1, 7), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (3, 4), (3, 5), (3, 6), (3, 7), (4, 5), (4, 6), (4, 7), (5, 6), (5, 7), (6, 7).
Пример 3 - В продолжение примера 2 пересечению событий A и B (т.е. случаю, когда по крайней мере один из резисторов, 1 или 2, включен в выборку, и, вместе с тем, ни один из резисторов 8, 9 и 10 не включен) соответствуют 11 исходов: (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7).
Объединению событий A и B соответствуют 27 исходов: (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9), (1, 10), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (2, 8), (2, 9), (2, 10), (3, 4), (3, 5), (3, 6), (3, 7), (4, 5), (4, 6), (4, 7), (5, 6), (5, 7) и (6, 7).
При этом число исходов, соответствующих объединению A и B (т.е. случаю, когда по крайней мере один из резисторов, 1 или 2, включен в выборку, и случаю, когда ни один из резисторов 8, 9 и 10 не включен в выборку), равное 27, может быть получено как 17+21-11, т.е. оно равно числу исходов, соответствующих событию A, плюс число исходов, соответствующих событию B, минус число исходов, соответствующих пересечению A и B.
Примечание - Предположительно в результате эксперимента произошло некоторое событие, если получен исход, принадлежащий данному событию. События принадлежат сигма-алгебре событий (2.69) - второму компоненту вероятностного пространства (2.68). События естественным образом возникают в контексте азартных игр (покер, рулетка и т.д.), в которых число исходов определяет планы на выигрыш.
|
fr
|

|
Пример 1 - В примере 1 из 2.1 дополнительным событием к событию {0} является событие (0, ), т.е. дополнением к событию "батарея изначально не функционирует". Подобным образом событие [0,3) соответствует тому, что "либо батарея изначально не функционировала, либо она функционировала менее 3 ч". Дополнительное событие [3, ) заключается в том, что "батарея работала 3 ч и время ее функционирования составляет более 3 ч".
Пример 2 - В примере 2 из 2.2 число исходов, соответствующих B, может быть легко найдено, если рассматривать событие, дополнительное к событию , которое состоит в том, что "выборка содержит по крайней мере один из резисторов 8, 9 или 10". Данное событие содержит 7+8+9=24 исхода: (1, 8), (2, 8), (3, 8), (4, 8), (5, 8), (6, 8), (7, 8), (1, 9), (2, 9), (3, 9), (4, 9), (5, 9), (6, 9), (7, 9), (8, 9), (1, 10), (2, 10), (3, 10), (4, 10), (5, 10), (6, 10), (7, 10), (8, 10), (9, 10). Так как в данном случае все пространство элементарных событий содержит 45 исходов, событие B содержит 45-24=21 исход [а именно: (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (3, 4), (3, 5), (3, 6), (3, 7), (4, 5), (4, 6), (4, 7), (5, 6), (5, 7), (6, 7)].
Примечание 1 - Дополнительное событие дополняет событие до пространства элементарных событий.
Примечание 2 - Дополнительное событие также является событием.
Примечание 3 - Для события дополнительное событие часто обозначают символом .
Примечание 4 - Во многих случаях легче найти вероятность дополнительного события, чем самого события. Например, событию "в случайной выборке объема 10, отобранной из генеральной совокупности объема 1000, для которой предполагаемый процент дефектов составляет единицу, встречается по крайней мере один дефект", соответствует очень большое число элементарных исходов. Гораздо легче работать с дополнительным событием "не обнаружено ни одного дефекта".
|
|

|