Статус документа
Статус документа

ГОСТ Р 8.945-2018 Государственная система обеспечения единства измерений (ГСИ). Стандартные справочные данные. Теплофизические характеристики пьезокерамик на основе ниобата лития в диапазоне температур от 300 К до 900 К

     3 Общие положения

3.1 Большинство пьезосегнетокерамик (сегнетопьезокерамические материалы - СПМ), серийно выпускаемых в мире, составляют многокомпонентные системы свинцовосодержащих сложных оксидов на основе твердых растворов цирконата-титаната свинца (ЦТС). В соответствии с экологическими требованиями к этим пьезокерамикам необходимо исключить токсичный оксид свинца из технологического процесса и изыскать новые пьезоэлектрические материалы, по свойствам не уступающие ЦТС-керамикам.

Многолетний опыт разработки высокоэффективных СПМ [1]-[7] позволяет получать группу бессвинцовых материалов на основе ниобатов щелочных металлов (НЩМ) - ниобаты лития, натрия, обладающих рядом уникальных свойств, не реализуемых в ЦТС-составах.

Достоинством таких СПМ являются:

- высокая скорость звука, определяющая высокочастотный (ВЧ) диапазон эксплуатации преобразователя, а также возможность получать заданную частоту на менее тонких пластинах, что упрощает технологию изготовления ВЧ-устройств за счет возможности увеличения их резонансных размеров, что, в свою очередь, выгодно и с точки зрения уменьшения емкости преобразователя;

- низкая плотность, приводящая, с одной стороны, к значительному снижению веса изделий, а с другой - к уменьшению акустического импеданса;

- очень низкая диэлектрическая проницаемость, что немаловажно для электрического согласования с генератором и нагрузкой;

- повышенный толщинный коэффициент электромеханической связи;

- достаточная анизотропия пьезосвойств, что позволяет улучшить отношение сигнал/шум и упростить технологию получения, исключив операцию резки материала;

- низкие диэлектрические и умеренные механические потери, что важно для получения коротких импульсов и равномерных амплитудно-частотных характеристик.

При работе в экстремальных условиях наиболее важное значение имеет поведение теплофизических свойств (ТФС) керамических материалов, особенно в областях структурных фазовых переходов, где наблюдаются их аномалии. Поэтому необходимо иметь подробные данные о температурной зависимости теплопроводности, теплоемкости и температурном коэффициенте линейного расширения в широком диапазоне температур (в области структурных фазовых переходов необходимо иметь данные о ТФС через 1°С-2°С).

3.2 ПКР-35 - пьезокерамика, твердый раствор , модифицированный стронцием. Обладает рядом уникальных свойств, не реализуемых в сегнетокерамиках на основе цирконата-титаната свинца: низкая плотность, высокая скорость ультразвука и достаточно высокие пьезохарактеристики при чрезвычайно низкой диэлектрической проницаемости, широкий диапазон механической добротности, высокая температура Кюри, что делает ПКР-35 незаменимой для сверхвысокочастотной пьезотехники.

ПКР-61 - пьезокерамика на основе твердых растворов ниобата лития (0,97+0,03), модифицированных другими химическими элементами. По сравнению с ЦТС-керамиками обладает высокой температурой Кюри (более 1200°С), низкой плотностью и высокой скоростью ультразвука. Имеет повышенную рабочую температуру до 950°С и крайне низкую диэлектрическую проницаемость, особенно благоприятную при использовании в высокочастотных устройствах (пьезодатчики быстроменяющихся давлений генераторного типа в системах контроля объектов, высокотемпературные датчики давления).

ПКР-38 - пьезокерамика (0,97+0,01+0,02) на основе твердых растворов ниобатов лития; является высокотемпературным материалом, температура Кюри более 1200°С, рабочая температура более 1000°С. Отличительная особенность: в интервале температуры от 25°С до 1000°С отсутствуют структурные переходы. Очень чувствительна к изменению давления, влажности и температуры. На ее основе возможно создание пьезодатчиков для кожухов тепловыделяющих элементов (ТВЭЛ) атомных реакторов на быстрых нейтронах, которые способны с высокой точностью регулироваться системой охлаждения (температура кожуха более 600°С).

Имеется достаточное количество работ, посвященных исследованию структуры, пьезосегнетоэлектрических и упругих свойств, возможности применения и создания промышленных пьезодатчиков. Однако исследования их теплофизических свойств (теплопроводность, теплоемкость, температурный коэффициент линейного расширения) в научно-технической литературе не представлены. Принцип работы в экстремальных условиях (высокие температура, давление, влажность) в большой степени зависят от характера и изменения теплофизических свойств. Без наличия достоверных данных о температурной зависимости ТФС, характера их изменений, связанных со структурными фазовыми переходами, невозможно конструировать пьезодатчики с заданными свойствами.