Статус документа
Статус документа

МР 1.2.2641-10 Определение приоритетных видов наноматериалов в объектах окружающей среды, пищевых продуктах и живых организмах

IV. ПЕРЕЧЕНЬ И КРАТКАЯ ХАРАКТЕРИСТИКА ПРИОРИТЕТНЫХ ВИДОВ НАНОМАТЕРИАЛОВ


Исходя из ситуации с производством и использованием наночастиц и наноматериалов, а также имеющихся сведений о факторах риска, связанных с наночастицами, при выборе приоритетных видов наноматериалов по содержанию в природных биологических и абиотических объектах и пищевых продуктах следует руководствоваться следующими принципами:

- в наборе анализируемых наночастиц должны присутствовать представители основных групп;

- анализируемые наночастицы производятся или в ближайшее время будут производиться в больших объемах;

- наночастицы могут оказывать воздействие на организм;

- наночастицы должны быть "стандартными", т.е. хорошо охарактеризованными и однородными по размеру, составу и форме.

Стандартные образцы наноматериалов классифицируются в соответствии с их химическим составом. За основу принята классификация, используемая в международном реестре наночастиц и наноматериалов:

- металлические наночастицы (Au, Ag, Pt, Pd, Ru, Ni, Cu и другие);

- наночастицы оксидов металлов и неметаллов (SiO, AlO, TiO, SnO, ZnO, MoO, VO, PbO, FeO, NiO и другие);

- полупроводниковые наночастицы (CdS, CdSe, PbS, PbTe, GaN, GaAs, InN и другие);

- углеродные наночастицы (фуллерены С, углеродные нанотрубки и некоторые другие);

- наночастицы органически модифицированных слоистых силикатов и алюмосиликатов (наноглины различного состава);

- наночастицы из органических разветвленных полимеров (дендримеры различного состава).

Далее приведены краткие характеристики некоторых видов промышленно выпускаемых наноматериалов, для которых характерны наибольшие объёмы производства и, следовательно, наибольшая вероятность выявления в составе объектов природной среды.

4.1. Фуллерены - наночастицы, образованные определённым (обычно 60 или 70) числом атомов углерода, организованных в сферический каркас. Фуллерены можно рассматривать как отдельную аллотропическую форму углерода, не тождественную двум ранее известным - алмазу и графиту. Форма выпуска фуллеренов: порошки или растворы в органических растворителях, а также нанопленки (толщиной до 20 нм). В эту группу входят и химически модифицированные фуллерены: гидроксилированные, галогенированные, связанные с аминокислотами и металлами. Немодифицированные фуллерены практически нерастворимы в воде и полярных растворителях, а также в алифатических углеводородах и в жирах; умеренно растворимы в ароматических углеводородах (толуол, ксилол, хлорбензол). Возможно получение коллоидных (мицеллярных) водных растворов фуллеренов в комплексе с некоторыми поверхностно-активными веществами и полимерами. Многие химически модифицированные фуллерены хорошо растворимы в воде. Истинные (молекулярные) растворы фуллеренов окрашены (имеют красный или фиолетовый цвет), имеют характеристический максимумом поглощения в ближнем ультрафиолете при длине волны 324-340 нм.

Контаминация природных биологических и абиотических объектов фуллеренами возможна в ходе их производства, перевозки фуллеренсодержащей продукции и утилизации её отходов.

4.2. Углеродные нанотрубки по структуре близки к фуллеренам, но представляют собой не сферические, а линейные (протяженные) каркасные конструкции, сложенные атомами углерода. Различают однослойные (одностенные) и многослойные (многостенные) нанотрубки. Последние представляют из себя конструкции из коаксиально вложенных одна в другую однослойных нанотрубок разного диаметра. Другим показателем структуры нанотрубок является спиральность, то есть величина атомарного сдвига, достигаемого при замыкании плоского слоя, образованного атомами углерода, в трубку. В промышленных условиях производятся нанотрубки различного диаметра (от 1 нм до 90 нм) и различной степени очистки в виде порошков, суспензий в органических растворителях, в отдельных случаях в виде гелей или пленок. Нанотрубки, как и фуллерены, практически нерастворимы в воде и полярных растворителях, однако они обладают липофильностью и способны накапливаться в организме. По условиям своего получения одностенные углеродные трубки практически всегда содержат примесь металлических катализаторов (как правило, переходных металлов VIII группы или меди).

4.3. Наночастицы металлического серебра имеют форму, близкую к сферической, и размер, в зависимости от условий получения, от 5 до 80 нм. Различные препараты наносеребра имеют разную степень гетерогенности по размерам частиц. Препараты наночастиц серебра нестабильны и проявляют выраженную склонность к агрегации с образованием комплексов значительно большего, чем исходные частицы, размера. Стабильные дисперсии наночастиц серебра в воде или в органических растворителях (гексан, бензол и т.д.) могут быть получены в присутствии анионактивных поверхностно-активных веществ или полимеров, например поливинилпирролидона. Они представляют собой жидкости, окрашенные (в зависимости от концентрации наночастиц) в жёлтый или коричневый цвет.

4.4. Наночастицы диоксида титана выпускаются в двух основных видах, различающихся по своей кристаллической структуре: анатаза - представлена наночастицами формы, близкой к сферической, и размером в диапазоне 5-15 нм; рутил - представлен наночастицами в форме палочек или стержней диаметром около 10 и длиной до 40 нм. Обе изоформы наноразмерного диоксида титана в чистом виде представляют собой лёгкие белые порошки, которые интенсивно электризуются. Они не растворимы в воде, но легко диспергируются в воде с образованием жидкостей молочно-белого цвета, которые затем медленно (на протяжении часов) седиментируют. В среде биологических жидкостей различного состава наночастицы диоксида титана агрегируют с образованием комплексов субмикронного размера.

4.5. Наночастицы диоксида кремния представлены двумя модификациями: аморфной (кремнезем) и кристаллической (кварц). Форма частиц близка к сферической, размер, в зависимости от условий получения, варьирует от 5 до 80 нм. Внешний вид наноматериала - лёгкие порошки белого цвета. Наночастицы аморфного кремнезема обладают различной степенью пористости, поэтому данные оценки их удельной площади поверхности на основании геометрии частиц и по методу изотерм адсорбции инертных газов могут сильно расходиться. В среде биологических жидкостей различного состава наночастицы диоксида кремния, так же, как и диоксида титана, агрегируют с образованием комплексов субмикронного размера.

4.6. Наночастицы оксида алюминия имеют сферическую форму и размер в диапазоне, как правило, 30-60 нм. В форме нанопорошков они стабильны, в воде и биологических жидкостях проявляют склонность к агрегации. По своему агрегатному состоянию представляют собой лёгкие порошки белого цвета, не растворимые в воде и органических растворителях, но растворимые в разбавленных кислотах и щелочах.

4.7. Наночастицы оксида цинка имеют форму, близкую к сферической, и размер в диапазоне 10-100 нм. Они представляют собой лёгкий порошок белого цвета, не растворимый в воде и органических растворителях, но легко растворимый в разбавленных кислотах и щелочах.