Статус документа
Статус документа


     СО 153-34.02.304-2003

     

СТАНДАРТ ОРГАНИЗАЦИИ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО РАСЧЕТУ ВЫБРОСОВ ОКСИДОВ АЗОТА
С ДЫМОВЫМИ ГАЗАМИ КОТЛОВ ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ

     

Дата введения 2003-07-01



РАЗРАБОТАН Открытым акционерным обществом "Всероссийский теплотехнический научно-исследовательский институт" (ОАО "ВТИ"); Государственным образовательным учреждением высшего профессионального образования "Московский энергетический институт (технический университет)" [ГОУВПО МЭИ (ТУ)]

Исполнители Котлер В.Р., Енякин Ю.П., Усман Ю.М., Верещетин В.А. (ОАО "ВТИ"), Росляков П.В., Егорова Л.Е., Ионкин И.Л. [ГОУВПО МЭИ (ТУ)]

УТВЕРЖДЕН Министерством энергетики Российской Федерации, приказ Минэнерго России N 286 от 30.06.2003

Министр энергетики И.Х.Юсуфов

ВЗАМЕН РД 34.02.304-95


Настоящие Методические указания могут использоваться для расчета выбросов оксидов азота при проектировании новых и реконструкции действующих котлов паропроизводительностью от 75 т/ч и водогрейных котлов мощностью от 58 МВт (50 Гкал/ч) и выше, сжигающих твердое, жидкое и газообразное топливо в факельных горелочных устройствах. Настоящие Методические указания могут также применяться в научно-исследовательских целях.

Настоящие Методические указания предназначены для организаций, эксплуатирующих тепловые электростанции и котельные, а также проектных организаций.

     1 ОБЩИЕ ПОЛОЖЕНИЯ


Сжигание топлива на тепловых электростанциях и в котельных приводит к выбросу в атмосферу продуктов сгорания органического топлива, содержащих токсичные оксиды азота (главным образом монооксид и в меньшей степени диоксид ).

Количество образующихся оксидов азота зависит от характеристик топлива, режимных и конструктивных параметров топочной камеры. Поэтому на стадии проектирования или реконструкции котлов необходимо провести расчет ожидаемых выбросов оксидов азота и предусмотреть меры по снижению их до величин, не превышающих нормативы удельных выбросов в атмосферу, приведенных в ГОСТ Р 50831-95 "Установки котельные. Тепломеханическое оборудование. Общие технические требования".

В уходящих газах паровых и водогрейных котлов монооксид азота составляет 95-99% общего выброса , в то время как содержание более токсичного диоксида азота не превышает 1-5%. После выброса дымовых газов в атмосферу под воздействием природных факторов большая часть конвертирует в . Поэтому расчет массовых концентраций и выбросов оксидов азота ведется в пересчете на.

В связи с установленными раздельными ПДК в атмосферном воздухе на монооксид и диоксид азота и с учетом трансформации оксидов азота в атмосфере при расчете загазованности и нормировании выбросов ТЭС суммарные массовые выбросы оксидов азота разделяются на составляющие (с учетом различия в молярной массе этих веществ):

;                                                              (1.1)

,                             (1.2)


где и - молярные массы и , равные 30 и 46 соответственно; 0,8 - коэффициент трансформации оксида азота в диоксид. Численное значение коэффициента трансформации может устанавливаться по методике Госкомэкологии России на основании данных фактических измерений местных органов Росгидромета, но не более 0,8.

Источниками оксидов азота является молекулярный азот воздуха, используемого в качестве окислителя при горении, и азотсодержащие компоненты топлива. В связи с этим принято делить оксиды азота на воздушные и топливные. Воздушные, в свою очередь, можно разделить на термические, образующиеся при высоких температурах за счет окисления молекулярного азота воздуха, и так называемые "быстрые" оксиды азота, образующиеся во фронте факела при сравнительно низких температурах в результате реакции углеводородных радикалов с молекулой азота.

     2 ЕДИНИЦЫ ИЗМЕРЕНИЯ ГАЗООБРАЗНЫХ ВЫБРОСОВ


Для количественной характеристики газообразных выбросов котлов используют объемные и массовые концентрации вредных веществ, а также их удельные или валовые (массовые) выбросы.

     2.1 Объемные концентрации представляют собой отношение объема, занимаемого данным газообразным веществом, к объему всей газовой пробы. Объемные концентрации могут измеряться в % об или ppm. Единица измерения 1 ppm (part per million) представляет собой одну миллионную часть объема:

.                                 (2.1)


Важным преимуществом измерения содержания газовых компонентов в объемных концентрациях является то, что объемные концентрации не зависят от давления и температуры среды и, следовательно, расчетные или опытные результаты газового анализа, выраженные в % об или ppm, не требуют приведения к каким-либо заданным условиям по температуре и давлению.

2.2 Массовые концентрации характеризуют количество (массу) данного вещества в одном кубическом метре продуктов сгорания. С их помощью оценивается содержание в продуктах сгорания как твердых, так и газообразных компонентов. Массовые концентрации измеряются в г/мили мг/м.

В отличие от объемной массовая концентрация зависит от давления и температуры среды, поэтому ее приводят в пересчете на нормальные условия (0 °С, 760 мм рт.ст. =101,3 кПа), для чего используется следующее выражение:

 ,                                                (2.2)


где - массовая концентрация, полученная опытным путем при температуре и давлении газовой пробы.

   

2.3 Связь между объемными (ppm) и массовыми (г/м) концентрациями устанавливается следующим соотношением:

,                                                             (2.3)


где - коэффициент пересчета, равный

;                                            (2.4)


- молярная масса -го вещества, г; - его молярный объем, л (в качестве первого приближения за может быть принят объем идеального газа, равный 22,41 л); - температура и - давление газовой пробы перед газоанализатором (последнее приравнивается к фактическому атмосферному давлению). Значения коэффициента пересчета приведены в таблице 2.1.

Таблица 2.1 - Значения коэффициента пересчета для реальных газов
при нормальных условиях (0 °С; 101,3 кПа)

Вещества

Молярная масса
, г

Молярный объем , л

Коэффициент пересчета

30,0061

22,39

1,34·10

 

46,0055

22,442

2,05·10

        

2.4 Для корректного сопоставления опытных и расчетных данных полученные массовые или объемные концентрации пересчитываются на стандартные условия*, в качестве которых приняты следующие: 1,4 в сухих дымовых газах при нормальных условиях [0 °С и 101,3 кПа (760 мм рт.ст.)].

________________

* ГОСТ Р 50831-95 "Установки котельные. Тепломеханическое оборудование. Общие технические требования".

В зависимости от применяемых методов измерения и расчетных методик определение содержания газовых компонентов производится во влажных или сухих продуктах сгорания. При этом под сухими продуктами сгорания (сухие газы) подразумеваются дымовые газы, в которых произошла конденсация образовавшихся в процессе горения топлива водяных паров из-за их остывания до температур ниже температуры насыщения. Поэтому для пересчета расчетных и опытных концентраций на стандартные условия используются разные формулы:

при пересчете концентраций , полученных для сухих газов, на стандартные условия () для сухих газов:

;                                                    (2.5)

;                             (2.6)


при пересчете концентраций, полученных для влажных газов, на стандартные условия для сухих газов:

;                                          (2.7)

,                            (2.8)


где - расчетный или опытный коэффициент избытка воздуха в сечении отбора газовой пробы; , - теоретические объемы соответственно воздуха и влажных газов; - теоретический объем сухих газов.

2.5 Значения , , принимаются по справочным данным или рассчитываются по химическому составу сжигаемого топлива:

для твердого и жидкого топлива/кг)

;                   (2.9)

;                             (2.10)

     
               (2.11)


где , , , , - соответственно содержание углерода, серы (органической и колчеданной), водорода, кислорода и азота в рабочей массе топлива, % по массе; - влажность рабочей массы топлива, % по массе;

для газообразного топлива)

;     (2.12)

;      (2.13)

,    (2.14)


где , , , , , , - соответственно содержание оксида углерода, диоксида углерода, водорода, сероводорода, углеводородов, азота и кислорода в исходном топливе, % по объему; и - число атомов углерода и водорода, соответственно; - влагосодержание газообразного топлива, г/м.

Доступ к полной версии документа ограничен
Этот документ или информация о нем доступны в системах «Техэксперт» и «Кодекс».
Нужен полный текст и статус документов ГОСТ, СНИП, СП?
Попробуйте «Техэксперт: Лаборатория. Инспекция. Сертификация» бесплатно
Реклама. Рекламодатель: Акционерное общество "Информационная компания "Кодекс". 2VtzqvQZoVs