Статус документа
Статус документа

ГОСТ 28205-89 (МЭК 68-2-9-75) Основные методы испытаний на воздействие внешних факторов. Часть 2. Испытания. Руководство по испытанию на воздействие солнечной радиации

5. ИСТОЧНИК ИЗЛУЧЕНИЯ

5.1. Общие положения

Источник излучения может состоять из одной или нескольких ламп и связанных с ними оптических элементов, например рефлекторов, светофильтров и т.п., обеспечивающих получение требуемого спектра и заданной интенсивности излучения.

Ксеноновая газоразрядная лампа высокого давления, снабженная светофильтрами, может обеспечить наилучшую имитацию солнечной радиации. Ртутные и ксеноново-ртутные лампы в отношении имитации солнечной радиации имеют серьезные недостатки, которые могут привести к ошибочным результатам. Дуговые лампы с электродами из угля с добавлением специальных примесей имеют широкое применение, однако вследствие недостаточной стабильности и сложности в эксплуатации сфера их использования ограничена. Могут использоваться вольфрамовые лампы накаливания, если целью испытания является только оценка тепловых явлений. Однако эти лампы позволяют оценить фотохимический эффект, так как в спектре их излучения ультрафиолетовая часть почти полностью отсутствует.

Характеристики этих ламп, особенности светофильтров, оптических устройств и т.п. рассматриваются далее.

5.2. Ксеноновые лампы

Геометрическая форма и размер применяемых ламп определяются требованиями испытания. Типичный спектральный состав излучения ксенонового разрядного промежутка приведен на рис.1.

Сравнение излучения типичной ксеноновой дуговой лампы высокого давления
с кривыми спектрального распределения солнечного излучения для воздушных масс 0-1 и 2


________________

* На рис.1 и 2 условная толщина воздушной массы, сквозь которую проходит солнечное излучение, обозначена буквой М. Условная толщина воздушной массы различна для разных углов () положения Солнца (М=1 - Солнце в зените; М=2 при 60°).

Рис.1



Следует учитывать также излучение раскаленных электродов. Относительная энергия этого излучения при коротких разрядных промежуточных значительно больше, чем при длинных, и она может существенно отразиться на имитации спектра, поскольку доля инфракрасного излучения электродов больше доли инфракрасного излучения разрядного промежутка. Установлено, что относительный спектральный состав излучения ксенонового разрядного промежутка практически не зависит от мощности лампы. У ламп с различной мощностью температура электродов будет различной, а следовательно, будет различен и спектральный состав их излучения. При использовании ламп с длинными разрядными промежутками излучение электродов можно легко сделать незначительным в общем балансе. Конструктивные особенности ламп с короткими разрядными промежутками обусловливают значительно более широкие производственные допуски, чем у ламп с длинными разрядными промежутками. Это особенно важно учитывать при замене ламп.

Все типы ламп нуждаются в периодической замене, поскольку их интенсивность излучения постоянно уменьшается с течением времени и в процессе эксплуатации интенсивность излучения может меняться у разных ламп по-разному. Несмотря на изменение интенсивности излучения в процессе эксплуатации относительный спектральный состав излучения ксенонового разрядного промежутка остается практически неизменным, так как ксенон является безпримесным чистым элементным газом.

5.3. Вольфрамовые лампы накаливания

Вольфрамовые лампы накаливания почти не излучают ультрафиолетовых лучей, поэтому они непригодны для испытаний, проводимых с целью выявления возможной деградации. Могут иметь место также серьезные расхождения в результатах испытаний с целью определения теплового воздействия на образцы, если не будут учтены значительные различия в спектральном распределении энергии излучения по отношению к солнечной радиации (см. п.2.3). На рис.2 для сравнения приведено спектральное распределение энергии излучения типичной вольфрамовой лампы накаливания, имеющей температуру нити накала 2600 К, и распределение энергии солнечного излучения. Большая часть энергии, излучаемой вольфрамовой лампой, приходится на инфракрасную область спектра; максимум энергии в спектре соответствует длине волны около 1,0 мкм. В солнечном спектре приблизительно 50% энергии приходится на видимую и ультрафиолетовую части спектра, что соответствует длинам волн короче 0,7 мкм. Лампа с вольфрамовой нитью, заключенная в колбу из кварцевого стекла с галогенным наполнителем, обладает лучшей стабильностью рабочих характеристик на протяжении срока службы.

Сравнение излучения вольфрамовой лампы накаливания с кривыми спектрального
распределения излучения солнечной радиации для воздушных масс 0-1 и 2


Рис.2



5.4. Дуговые лампы с угольными электродами

При определенных условиях вольтова дуга между угольными электродами может обеспечить излучение, спектральный состав которого близок к солнечному, наблюдаемому на уровне земной поверхности. Однако корректирующие светофильтры все же необходимы, особенно в ультрафиолетовой области. Сгорание электродов не допускает точной локализации и фиксации источника света. Самым большим недостатком вольтовой дуги является ее постепенное затухание. Даже при очень продуманной системе подающего механизма время непрерывного горения не превышает 5 ч.

5.5. Ртутные лампы

Излучение ртутных ламп в красной и инфракрасной областях спектра недостаточно, и их спектр содержит несколько спектральных линий высокой интенсивности. Ртутные лампы используют совместно с вольфрамовыми лампами накаливания в соляриях, а ртутно-ксеноновые газоразрядные лампы используют в целях испытаний на воздействие внешних факторов. Однако высокая интенсивность спектральных линий делает ртутную лампу в большинстве случаев неприемлемой в качестве источника, имитирующего солнечное излучение.

5.6. Светофильтры

Жидкостные фильтры имеют определенные недостатки, например возможность вскипания, зависимость коэффициента пропускания от температуры и дрейф спектральной характеристики во времени. Поэтому предпочтительнее использовать стеклянные фильтры, хотя состав стекла воспроизвести сложнее, чем химический раствор. Для компенсации неодинаковой оптической плотности стекол можно применять пластины разной толщины, подбирая их по методу проб и ошибок. На технологические процессы изготовления стеклянных фильтров имеются патенты, поэтому при выборе нужных фильтров следует руководствоваться рекомендациями изготовителей. Выбор светофильтров зависит от источника излучения и способа его применения. Например, спектр излучения ксеноновой лампы может быть откорректирован при помощи комбинации абсорбционных светофильтров для инфракрасной и ультрафиолетовой областей.

Некоторые стеклянные светофильтры для инфракрасной области спектры имеют тенденцию быстро изменять свои спектральные характеристики под воздействием интенсивного ультрафиолетового излучения. Такое изменение можно в значительной степени предотвратить, поместив между источником излучения и светофильтром для инфракрасной области спектра светофильтр для ультрафиолетовой области спектра. Интерференционные фильтры, основанные не на поглощении, а на отражении нежелательного излучения, меньше нагреваются и обычно более стабильны, чем абсорбционные фильтры.