Статус документа
Статус документа


ПРАВИТЕЛЬСТВО МОСКВЫ
МОСКОМАРХИТЕКТУРА

ПОСОБИЕ к МГСН 2.02-97

ПРОЕКТИРОВАНИЕ ПРОТИВОРАДОНОВОЙ ЗАЩИТЫ
ЖИЛЫХ И ОБЩЕСТВЕННЫХ  ЗДАНИЙ


Предисловие



1. РАЗРАБОТАНО НИИ строительной физики (НИИСФ) Российской академии архитектуры и строительных наук (РААСН), автор - проф., докт. техн. наук Гулабянц Л.А.

2. ПОДГОТОВЛЕНО к утверждению и изданию Управлением перспективного проектирования и нормативов Москомархитектуры (инж. Щипанов Ю.Б., Шевяков И.Ю.).

3. УТВЕРЖДЕНО указанием Москомархитектуры от 20 февраля 1998 г. № 7.

ВВЕДЕНИЕ


1. Настоящее Пособие разработано в развитие и дополнение Норм радиационной безопасности   (НРБ-96), Свода Правил "Инженерно-экологические изыскания для строительства" СП 11-102-97 и московских городских строительных норм МГСН 2. 02-97 "Допустимые уровни ионизирующего излучения и радона на участках застройки".

   2. В Пособии на основе обобщения отечественных и зарубежных данных показаны основные источники и пути поступления радона в здания, сформулированы основные принципы их противорадоновой защиты, дана классификация методов и средств защиты, изложены рекомендации по их практической реализации при проектировании и строительстве.

3. Область применения Пособия - разработка проектов противорадоновой защиты новых и реконструируемых жилых, общественных, коммунальных и производственных зданий для строительства на радоноопасных участках территории г. Москвы и лесопаркового защитного пояса (ЛПЗП).

4. Цель противорадоновой защиты зданий - обеспечение выполнения требований п. 7. 3. 3.  НРБ-96,  согласно которым среднегодовая эквивалентная равновесная объемная активность изотопов радона в воздухе помещений не должна превышать 100 .

5.    Идентификация    участка    строительства    как радоноопасного производится на основе результатов инженерных радиационно-экологических изысканий, осуществляемых согласно пп. 4.45, 6.22 и 6.23   СП 11-102-97; п. 4.4 МГСН 2.02-97  и Временным методическим указаниям  "Определение плотности потока радона на участках застройки" ВМУ Р1-97, утвержденным 02. 06. 97 ЦГСЭН в г. Москве и Москомархитектурой.     

1. ОБЩИЕ ПОЛОЖЕНИЯ


1. 1. Источники радона



Радон (Rn-222) и торон (Rn-220) - это радиоактивные газы, не имеющие вкуса, цвета и запаха. Радон является одним из продуктов распада урана (U-238) и непосредственно образуется из радия (Ra-226). Торон - является одним из продуктов распада тория (Th-232). Радон и торон - единственные газообразные элементы в рядах распада урана и тория. При их распаде последовательно образуются цепочки  дочерних  продуктов, которые завершаются стабильными элементами - изотопами свинца (Pb-206 и Pb-208).

Каждый акт распада радона,  торона и их дочерних продуктов сопровождается выделением гамма-кванта, альфа или бета-частицы. Присутствие этих газов (далее по тексту - "радона") в воздухе помещения однозначно свидетельствует о присутствии здесь же их дочерних продуктов.

При решении задач  противорадоновой защиты зданий источниками радона считаются объекты, из которых радон непосредственно поступает в помещения независимо от природы его появления в этих объектах.

Присутствие   радона в воздухе помещения может  быть обусловлено его поступлениями из следующих источников:

- залегающих под зданием грунтов;

- ограждающих конструкций, изготовленных с применением строительных материалов из горных пород;

- наружного воздуха;

- воды из системы водоснабжения здания;

- сжигаемого в здании топлива.     

1.2. Механизмы и пути поступления
радона в здание



Средние мировые значения объемной  активности (концентрации) радона в наружном воздухе на высоте 1м от поверхности земли составляют от 7 до 12 (фоновое значение). На территориях с насыщенными радоном грунтами эта величина может достигать 50 . Известны территории, где активность радона в наружном воздухе достигает 150 и более . Объемную активность радона в наружном воздухе на данной территории следует рассматривать как его наиболее низкую возможную активность во внутреннем воздухе расположенного на этой территории здания.

Объемная активность радона в почвенном воздухе может составлять от нескольких тысяч до нескольких сотен тысяч . На открытой территории выделяемый из почвы радон быстро рассредоточивается в практически неограниченном объеме наружного воздуха. Поэтому его активность в атмосфере становится на несколько порядков ниже, чем в почве. Например, при активности радона в почве от 5000 до 110 000 и скорости его выделения (плотности потока) из почвы от 4 до 20 активность радона в наружном воздухе падает до 5-20 .

При возведении здания выделяющий радон участок территории изолируется от окружающего пространства. Поэтому радон, выделяющийся из залегающих под зданием грунтов, не может свободно рассредоточиваться в атмосфере, проникает в здание, и его концентрация в воздухе помещений становится выше, чем в наружном воздухе.

Поступления    почвенного    радона    в    помещения обуславливаются его конвективным (вместе с воздухом) переносом через трещины, щели, полости и проемы в ограждающих конструкциях здания, а также  диффузионным переносом через ограждающие конструкции.

Вследствие разности температур (следовательно, разности плотностей) воздуха внутри и вне помещений, в направлении движения радона из грунта в здание возникает отрицательный градиент давления. Уже при разности давлений равной 1 - 3 Па начинает действовать механизм "подсоса" радона в здание. Причиной неблагоприятного распределения давлений могут служить также ветровое воздействие на здание и работа вытяжной вентиляционной системы.

Количество радона,    поступающего в помещения из ограждающих конструкций, зависит от концентрации радия в материалах ограждающих конструкций и их газопроницаемости. В большинстве случаев вклад выделяющегося из ограждающих конструкций радона в суммарные поступления не превышает 10%.

Радон хорошо растворяется в воде.   Поэтому высокое содержание радона может быть в воде, подаваемой в здания непосредственно из скважин глубокого заложения. Выделения радона из поверхностных водных источников,  а также из сжигаемых в печах нефти или природного газа,   обычно пренебрежимо малы. Основные  пути поступления радона в здание показаны на рис. 1.

Рис. 1. Основные пути поступления радона в здание


1 -     выделения из материалов ограждающих конструкций,

2 -     швы и стыки между элементами ограждающих конструкций,

3 - трещины и пустоты в ограждающих конструкциях,

4 - проемы для прокладки инженерных коммуникаций в подземной части здания и подвальном перекрытии.


Основная часть радона поступает в помещения из залегающих под зданием грунтов. Перенос радона из грунта в помещения происходит за счет его диффузии через ограждающие конструкции и, главным образом, за счет конвективного воздухообмена через трещины, щели, полости и проемы в ограждающих конструкциях.

Естественный процесс снижения концентрации поступившего в помещения радона происходит за счет его распада и инфильтрации наружного воздуха.     

1.3. Состояние проблемы противорадоновой
защиты зданий



Современное состояние проблемы  противорадоновой защиты зданий характеризуется опережающим развитием ее технических аспектов, по сравнению с развитием требуемой научной основы.  Несмотря на широкий спектр применяемых технических решений защиты, все еще не установлены нормированные параметры, позволяющие   производить количественное сравнение эффективности различных решений. Отсутствуют  представительные расчетные   модели, позволяющие с  требуемой точностью прогнозировать содержание радона в помещениях в случае применения тех или иных   средств защиты. Дело осложняется чрезвычайной критичностью многих решений к такому количественно неопределяемому фактору как "качество строительных работ". Поэтому   все предписания   по способам противорадоновой защиты имеют рекомендательный характер, ни одно из них не основано на точном расчете и не нормировано. Тем не менее, имеющийся   опыт   приводит   к   выводу,  что задача противорадоновой защиты в абсолютном большинстве случаев практически разрешима. Цель не достигается обычно лишь в случае грубых ошибок. Цена достижения цели и эффективность результата существенно зависят от соблюдения ряда установленных опытом принципов.     

1.4. Основные принципы противорадоновой
защиты



1.4.1. Принципиально пониженное содержание радона во внутреннем воздухе помещений может быть обеспечено за счет:

- выбора для строительства участка с низкими выделениями радона из грунтов;

- применения  ограждающих  конструкций,  эффективно препятствующих проникновению радона из грунтов в здание;

- удаления радона из внутреннего воздуха помещений.

1.4.2. При строительстве на радоноопасных участках основной принцип противорадоновой защиты   здания заключается   в предотвращении поступлений радона в помещения. Необходимость удаления радона из помещений    свидетельствует о низком качестве противорадоновой защиты.

1.4.3. Конструкции,    предназначенные    для снижения поступлений радона в здание, следует располагать как можно ближе к источнику радона. Чем ближе к источнику и дальше от защищаемых помещений устраивается защита, тем выше ее эффективность. Основными являются защитные мероприятия, препятствующие поступлениям радона из грунта в подполье (или в подвальное помещение).

1.4.4. Мероприятия по противорадоновой защите здания, осуществляемые на стадиях его проектирования и строительства, более эффективны и требуют меньших затрат, чем мероприятия по снижению содержания радона в уже построенном здании.

1.4.5.   Противорадоновая   защита   здания      должна осуществляться как система  логически связанных технических решений, реализуемых в рамках принятой концепции проекта при разработке его всех основных частей (объемно-планировочном решении,   проектировании   ограждающих конструкций, систем отопления, вентиляции, канализации, электро- и водоснабжения и т. п.). Неудачное решение одного из элементов такой системы защиты может существенно снизить эффективность системы в целом.     

1. 5. Организация работ



1.5.1. Проектное решение противорадоновой защиты здания, возводимого на радоноопасном участке, подлежит согласованию в органах Госсанэпиднадзора. Перед представлением проекта на согласование рекомендуется проведение его экспертной оценки в специализированной организации.

1.5.2. Все скрытые строительные работы по устройству противорадоновой защиты  должны производиться под авторским надзором проектной организации и поэтапно оформляться актами скрытых работ. Руководитель строительных работ по устройству противорадоновой защиты должен быть ознакомлен с данным Пособием.     

2. СПОСОБЫ ПРОТИВОРАДОНОВОЙ ЗАЩИТЫ


2. 1. Пассивная и активная системы защиты



Системы противорадоновой защиты зданий подразделяются на два основных вида - пассивные и активные.

Действие   пассивной системы   основано на повышении сопротивления узлов и элементов  ограждающих  конструкций здания диффузионному и конвективному переносу радона от источника в помещения. Преимущество пассивных систем в том, что они в процессе эксплуатации не требуют обслуживания и энергообеспечения.

Действие активной системы   основано на   снижении радоновой нагрузки на здание путем принудительного отвода радона от источника в атмосферу. Активная система защиты всегда включает в себя систему принудительной вентиляции и поэтому нуждается в источнике энергии и обслуживании. Преимущество активных систем заключается в том, что они являются управляемыми и более эффективными по своим защитным свойствам, чем пассивные. Активная система защиты всегда включает в себя элементы пассивной системы.

При проектировании систем противорадоновой защиты рекомендуется  использовать определяемые в зависимости от конкретных условий сочетания технических решений, основные типы которых определены в разделе 2. 2.

Доступ к полной версии документа ограничен
Этот документ или информация о нем доступны в системах «Техэксперт» и «Кодекс».
Нужен полный текст и статус документов ГОСТ, СНИП, СП?
Попробуйте «Техэксперт: Лаборатория. Инспекция. Сертификация» бесплатно
Реклама. Рекламодатель: Акционерное общество "Информационная компания "Кодекс". 2VtzqvQZoVs